MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqlecan Unicode version

Theorem sqlecan 11225
Description: Cancel one factor of a square in a  <_ comparison. Unlike lemul1 9624, the common factor  A may be zero. (Contributed by NM, 17-Jan-2008.)
Assertion
Ref Expression
sqlecan  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  <_ 
( B  x.  A
)  <->  A  <_  B ) )

Proof of Theorem sqlecan
StepHypRef Expression
1 0re 8854 . . . 4  |-  0  e.  RR
2 leloe 8924 . . . 4  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  A  <->  ( 0  <  A  \/  0  =  A )
) )
31, 2mpan 651 . . 3  |-  ( A  e.  RR  ->  (
0  <_  A  <->  ( 0  <  A  \/  0  =  A ) ) )
4 recn 8843 . . . . . . . . . . . . 13  |-  ( A  e.  RR  ->  A  e.  CC )
5 sqval 11179 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  ( A ^ 2 )  =  ( A  x.  A
) )
64, 5syl 15 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  ( A ^ 2 )  =  ( A  x.  A
) )
76breq1d 4049 . . . . . . . . . . 11  |-  ( A  e.  RR  ->  (
( A ^ 2 )  <_  ( B  x.  A )  <->  ( A  x.  A )  <_  ( B  x.  A )
) )
873ad2ant1 976 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( A ^
2 )  <_  ( B  x.  A )  <->  ( A  x.  A )  <_  ( B  x.  A ) ) )
9 lemul1 9624 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( A  <_  B  <->  ( A  x.  A )  <_  ( B  x.  A ) ) )
108, 9bitr4d 247 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( A ^
2 )  <_  ( B  x.  A )  <->  A  <_  B ) )
11103exp 1150 . . . . . . . 8  |-  ( A  e.  RR  ->  ( B  e.  RR  ->  ( ( A  e.  RR  /\  0  <  A )  ->  ( ( A ^ 2 )  <_ 
( B  x.  A
)  <->  A  <_  B ) ) ) )
1211exp4a 589 . . . . . . 7  |-  ( A  e.  RR  ->  ( B  e.  RR  ->  ( A  e.  RR  ->  ( 0  <  A  -> 
( ( A ^
2 )  <_  ( B  x.  A )  <->  A  <_  B ) ) ) ) )
1312pm2.43a 45 . . . . . 6  |-  ( A  e.  RR  ->  ( B  e.  RR  ->  ( 0  <  A  -> 
( ( A ^
2 )  <_  ( B  x.  A )  <->  A  <_  B ) ) ) )
1413adantrd 454 . . . . 5  |-  ( A  e.  RR  ->  (
( B  e.  RR  /\  0  <_  B )  ->  ( 0  <  A  ->  ( ( A ^
2 )  <_  ( B  x.  A )  <->  A  <_  B ) ) ) )
1514com23 72 . . . 4  |-  ( A  e.  RR  ->  (
0  <  A  ->  ( ( B  e.  RR  /\  0  <_  B )  ->  ( ( A ^
2 )  <_  ( B  x.  A )  <->  A  <_  B ) ) ) )
16 sq0 11211 . . . . . . . . . . . 12  |-  ( 0 ^ 2 )  =  0
17 0le0 9843 . . . . . . . . . . . 12  |-  0  <_  0
1816, 17eqbrtri 4058 . . . . . . . . . . 11  |-  ( 0 ^ 2 )  <_ 
0
19 recn 8843 . . . . . . . . . . . 12  |-  ( B  e.  RR  ->  B  e.  CC )
2019mul01d 9027 . . . . . . . . . . 11  |-  ( B  e.  RR  ->  ( B  x.  0 )  =  0 )
2118, 20syl5breqr 4075 . . . . . . . . . 10  |-  ( B  e.  RR  ->  (
0 ^ 2 )  <_  ( B  x.  0 ) )
2221adantl 452 . . . . . . . . 9  |-  ( ( 0  =  A  /\  B  e.  RR )  ->  ( 0 ^ 2 )  <_  ( B  x.  0 ) )
23 oveq1 5881 . . . . . . . . . . 11  |-  ( 0  =  A  ->  (
0 ^ 2 )  =  ( A ^
2 ) )
24 oveq2 5882 . . . . . . . . . . 11  |-  ( 0  =  A  ->  ( B  x.  0 )  =  ( B  x.  A ) )
2523, 24breq12d 4052 . . . . . . . . . 10  |-  ( 0  =  A  ->  (
( 0 ^ 2 )  <_  ( B  x.  0 )  <->  ( A ^ 2 )  <_ 
( B  x.  A
) ) )
2625adantr 451 . . . . . . . . 9  |-  ( ( 0  =  A  /\  B  e.  RR )  ->  ( ( 0 ^ 2 )  <_  ( B  x.  0 )  <-> 
( A ^ 2 )  <_  ( B  x.  A ) ) )
2722, 26mpbid 201 . . . . . . . 8  |-  ( ( 0  =  A  /\  B  e.  RR )  ->  ( A ^ 2 )  <_  ( B  x.  A ) )
2827adantrr 697 . . . . . . 7  |-  ( ( 0  =  A  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A ^ 2 )  <_ 
( B  x.  A
) )
29 breq1 4042 . . . . . . . . 9  |-  ( 0  =  A  ->  (
0  <_  B  <->  A  <_  B ) )
3029biimpa 470 . . . . . . . 8  |-  ( ( 0  =  A  /\  0  <_  B )  ->  A  <_  B )
3130adantrl 696 . . . . . . 7  |-  ( ( 0  =  A  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  A  <_  B )
3228, 312thd 231 . . . . . 6  |-  ( ( 0  =  A  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  <_ 
( B  x.  A
)  <->  A  <_  B ) )
3332ex 423 . . . . 5  |-  ( 0  =  A  ->  (
( B  e.  RR  /\  0  <_  B )  ->  ( ( A ^
2 )  <_  ( B  x.  A )  <->  A  <_  B ) ) )
3433a1i 10 . . . 4  |-  ( A  e.  RR  ->  (
0  =  A  -> 
( ( B  e.  RR  /\  0  <_  B )  ->  (
( A ^ 2 )  <_  ( B  x.  A )  <->  A  <_  B ) ) ) )
3515, 34jaod 369 . . 3  |-  ( A  e.  RR  ->  (
( 0  <  A  \/  0  =  A
)  ->  ( ( B  e.  RR  /\  0  <_  B )  ->  (
( A ^ 2 )  <_  ( B  x.  A )  <->  A  <_  B ) ) ) )
363, 35sylbid 206 . 2  |-  ( A  e.  RR  ->  (
0  <_  A  ->  ( ( B  e.  RR  /\  0  <_  B )  ->  ( ( A ^
2 )  <_  ( B  x.  A )  <->  A  <_  B ) ) ) )
3736imp31 421 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A ^ 2 )  <_ 
( B  x.  A
)  <->  A  <_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   class class class wbr 4039  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753    x. cmul 8758    < clt 8883    <_ cle 8884   2c2 9811   ^cexp 11120
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-n0 9982  df-z 10041  df-uz 10247  df-seq 11063  df-exp 11121
  Copyright terms: Public domain W3C validator