MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqr0 Unicode version

Theorem sqr0 11974
Description: Square root of zero. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
sqr0  |-  ( sqr `  0 )  =  0

Proof of Theorem sqr0
StepHypRef Expression
1 0cn 9017 . . 3  |-  0  e.  CC
2 sqrval 11969 . . 3  |-  ( 0  e.  CC  ->  ( sqr `  0 )  =  ( iota_ x  e.  CC ( ( x ^
2 )  =  0  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) ) )
31, 2ax-mp 8 . 2  |-  ( sqr `  0 )  =  ( iota_ x  e.  CC ( ( x ^
2 )  =  0  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )
4 sqr0lem 11973 . . . . . . . 8  |-  ( ( x  e.  CC  /\  ( ( x ^
2 )  =  0  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  <-> 
x  =  0 )
54biimpi 187 . . . . . . 7  |-  ( ( x  e.  CC  /\  ( ( x ^
2 )  =  0  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  ->  x  =  0 )
65ex 424 . . . . . 6  |-  ( x  e.  CC  ->  (
( ( x ^
2 )  =  0  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ )  ->  x  =  0 ) )
7 simpr 448 . . . . . . 7  |-  ( ( x  e.  CC  /\  ( ( x ^
2 )  =  0  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  ->  ( ( x ^ 2 )  =  0  /\  0  <_ 
( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )
)
84, 7sylbir 205 . . . . . 6  |-  ( x  =  0  ->  (
( x ^ 2 )  =  0  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ ) )
96, 8impbid1 195 . . . . 5  |-  ( x  e.  CC  ->  (
( ( x ^
2 )  =  0  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ )  <->  x  = 
0 ) )
1093ad2ant3 980 . . . 4  |-  ( ( 0  e.  CC  /\  0  e.  CC  /\  x  e.  CC )  ->  (
( ( x ^
2 )  =  0  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ )  <->  x  = 
0 ) )
1110riota5OLD 6512 . . 3  |-  ( ( 0  e.  CC  /\  0  e.  CC )  ->  ( iota_ x  e.  CC ( ( x ^
2 )  =  0  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  =  0 )
121, 1, 11mp2an 654 . 2  |-  ( iota_ x  e.  CC ( ( x ^ 2 )  =  0  /\  0  <_  ( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )
)  =  0
133, 12eqtri 2407 1  |-  ( sqr `  0 )  =  0
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    e/ wnel 2551   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   iota_crio 6478   CCcc 8921   0cc0 8923   _ici 8925    x. cmul 8928    <_ cle 9054   2c2 9981   RR+crp 10544   ^cexp 11309   Recre 11829   sqrcsqr 11965
This theorem is referenced by:  sqr00  11996  abs0  12017  cphsqrcl2  19020  cxpsqr  20461  loglesqr  20509  asin1  20601  normgt0  22477  norm0  22478  areacirc  25988  rrncmslem  26232
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-n0 10154  df-z 10215  df-uz 10421  df-rp 10545  df-seq 11251  df-exp 11310  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967
  Copyright terms: Public domain W3C validator