MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqr2irr Unicode version

Theorem sqr2irr 12527
Description: The square root of 2 is irrational. See zsqrelqelz 12829 for a generalization to all non-square integers. The proof's core is proven in sqr2irrlem 12526, which shows that if  A  /  B  =  sqr ( 2 ), then  A and  B are even, so  A  /  2 and  B  /  2 are smaller representatives, which is absurd. An older version of this proof was included in The Seventeen Provers of the World compiled by Freek Wiedijk. It is also the first "top 100" mathematical theorems whose formalization is tracked by Freek Wiedijk on his Formalizing 100 Theorems page at http://www.cs.ru.nl/~freek/100/. (Contributed by NM, 8-Jan-2002.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
sqr2irr  |-  ( sqr `  2 )  e/  QQ

Proof of Theorem sqr2irr
Dummy variables  x  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2nn 9758 . . . . . 6  |-  ( y  e.  NN  ->  (
y  +  1 )  e.  NN )
2 breq2 4027 . . . . . . . . 9  |-  ( n  =  1  ->  (
z  <  n  <->  z  <  1 ) )
32imbi1d 308 . . . . . . . 8  |-  ( n  =  1  ->  (
( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( z  <  1  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
43ralbidv 2563 . . . . . . 7  |-  ( n  =  1  ->  ( A. z  e.  NN  ( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  A. z  e.  NN  ( z  <  1  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
5 breq2 4027 . . . . . . . . 9  |-  ( n  =  y  ->  (
z  <  n  <->  z  <  y ) )
65imbi1d 308 . . . . . . . 8  |-  ( n  =  y  ->  (
( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
76ralbidv 2563 . . . . . . 7  |-  ( n  =  y  ->  ( A. z  e.  NN  ( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  A. z  e.  NN  ( z  < 
y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
8 breq2 4027 . . . . . . . . 9  |-  ( n  =  ( y  +  1 )  ->  (
z  <  n  <->  z  <  ( y  +  1 ) ) )
98imbi1d 308 . . . . . . . 8  |-  ( n  =  ( y  +  1 )  ->  (
( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( z  <  ( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
109ralbidv 2563 . . . . . . 7  |-  ( n  =  ( y  +  1 )  ->  ( A. z  e.  NN  ( z  <  n  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  A. z  e.  NN  ( z  < 
( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
11 nnnlt1 9776 . . . . . . . . 9  |-  ( z  e.  NN  ->  -.  z  <  1 )
1211pm2.21d 98 . . . . . . . 8  |-  ( z  e.  NN  ->  (
z  <  1  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  /  z
) ) )
1312rgen 2608 . . . . . . 7  |-  A. z  e.  NN  ( z  <  1  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )
14 nnrp 10363 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  y  e.  RR+ )
15 rphalflt 10380 . . . . . . . . . . . . . 14  |-  ( y  e.  RR+  ->  ( y  /  2 )  < 
y )
1614, 15syl 15 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  (
y  /  2 )  <  y )
17 breq1 4026 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( y  / 
2 )  ->  (
z  <  y  <->  ( y  /  2 )  < 
y ) )
18 oveq2 5866 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( y  / 
2 )  ->  (
x  /  z )  =  ( x  / 
( y  /  2
) ) )
1918neeq2d 2460 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( y  / 
2 )  ->  (
( sqr `  2
)  =/=  ( x  /  z )  <->  ( sqr `  2 )  =/=  (
x  /  ( y  /  2 ) ) ) )
2019ralbidv 2563 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( y  / 
2 )  ->  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z )  <->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) ) ) )
2117, 20imbi12d 311 . . . . . . . . . . . . . . 15  |-  ( z  =  ( y  / 
2 )  ->  (
( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( (
y  /  2 )  <  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) ) ) ) )
2221rspcv 2880 . . . . . . . . . . . . . 14  |-  ( ( y  /  2 )  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  -> 
( ( y  / 
2 )  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) ) ) ) )
2322com13 74 . . . . . . . . . . . . 13  |-  ( ( y  /  2 )  <  y  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  -> 
( ( y  / 
2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) ) ) ) )
2416, 23syl 15 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  -> 
( ( y  / 
2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) ) ) ) )
25 simpr 447 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( sqr `  2
)  =  ( z  /  y ) )
26 zcn 10029 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ZZ  ->  z  e.  CC )
2726ad2antlr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  z  e.  CC )
28 nncn 9754 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  NN  ->  y  e.  CC )
2928ad2antrr 706 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  y  e.  CC )
30 2cn 9816 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  CC
3130a1i 10 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  2  e.  CC )
32 nnne0 9778 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  NN  ->  y  =/=  0 )
3332ad2antrr 706 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  y  =/=  0
)
34 2ne0 9829 . . . . . . . . . . . . . . . . . . 19  |-  2  =/=  0
3534a1i 10 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  2  =/=  0
)
3627, 29, 31, 33, 35divcan7d 9564 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( ( z  /  2 )  / 
( y  /  2
) )  =  ( z  /  y ) )
3725, 36eqtr4d 2318 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( sqr `  2
)  =  ( ( z  /  2 )  /  ( y  / 
2 ) ) )
38 simplr 731 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  z  e.  ZZ )
39 simpll 730 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  y  e.  NN )
4038, 39, 25sqr2irrlem 12526 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( ( z  /  2 )  e.  ZZ  /\  ( y  /  2 )  e.  NN ) )
4140simprd 449 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( y  / 
2 )  e.  NN )
4240simpld 445 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( z  / 
2 )  e.  ZZ )
43 oveq1 5865 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  ( z  / 
2 )  ->  (
x  /  ( y  /  2 ) )  =  ( ( z  /  2 )  / 
( y  /  2
) ) )
4443neeq2d 2460 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( z  / 
2 )  ->  (
( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) )  <->  ( sqr `  2 )  =/=  (
( z  /  2
)  /  ( y  /  2 ) ) ) )
4544rspcv 2880 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  /  2 )  e.  ZZ  ->  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) )  ->  ( sqr `  2 )  =/=  ( ( z  / 
2 )  /  (
y  /  2 ) ) ) )
4642, 45syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) )  -> 
( sqr `  2
)  =/=  ( ( z  /  2 )  /  ( y  / 
2 ) ) ) )
4741, 46embantd 50 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( ( ( y  /  2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) ) )  ->  ( sqr `  2
)  =/=  ( ( z  /  2 )  /  ( y  / 
2 ) ) ) )
4847necon2bd 2495 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  ( ( sqr `  2 )  =  ( ( z  / 
2 )  /  (
y  /  2 ) )  ->  -.  (
( y  /  2
)  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  /  (
y  /  2 ) ) ) ) )
4937, 48mpd 14 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  NN  /\  z  e.  ZZ )  /\  ( sqr `  2
)  =  ( z  /  y ) )  ->  -.  ( (
y  /  2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) ) ) )
5049ex 423 . . . . . . . . . . . . . 14  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( ( sqr `  2
)  =  ( z  /  y )  ->  -.  ( ( y  / 
2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) ) ) ) )
5150necon2ad 2494 . . . . . . . . . . . . 13  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( ( ( y  /  2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  ( y  / 
2 ) ) )  ->  ( sqr `  2
)  =/=  ( z  /  y ) ) )
5251ralrimdva 2633 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
( ( y  / 
2 )  e.  NN  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
( y  /  2
) ) )  ->  A. z  e.  ZZ  ( sqr `  2 )  =/=  ( z  / 
y ) ) )
5324, 52syld 40 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  ->  A. z  e.  ZZ  ( sqr `  2 )  =/=  ( z  / 
y ) ) )
54 oveq1 5865 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
x  /  y )  =  ( z  / 
y ) )
5554neeq2d 2460 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
( sqr `  2
)  =/=  ( x  /  y )  <->  ( sqr `  2 )  =/=  (
z  /  y ) ) )
5655cbvralv 2764 . . . . . . . . . . 11  |-  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  /  y
)  <->  A. z  e.  ZZ  ( sqr `  2 )  =/=  ( z  / 
y ) )
5753, 56syl6ibr 218 . . . . . . . . . 10  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
y ) ) )
58 oveq2 5866 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  (
x  /  z )  =  ( x  / 
y ) )
5958neeq2d 2460 . . . . . . . . . . . 12  |-  ( z  =  y  ->  (
( sqr `  2
)  =/=  ( x  /  z )  <->  ( sqr `  2 )  =/=  (
x  /  y ) ) )
6059ralbidv 2563 . . . . . . . . . . 11  |-  ( z  =  y  ->  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z )  <->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  y ) ) )
6160ceqsralv 2815 . . . . . . . . . 10  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  y ) ) )
6257, 61sylibrd 225 . . . . . . . . 9  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  ->  A. z  e.  NN  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) ) ) )
6362ancld 536 . . . . . . . 8  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  -> 
( A. z  e.  NN  ( z  < 
y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  /\  A. z  e.  NN  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) ) )
64 nnleltp1 10071 . . . . . . . . . . . . . 14  |-  ( ( z  e.  NN  /\  y  e.  NN )  ->  ( z  <_  y  <->  z  <  ( y  +  1 ) ) )
65 nnre 9753 . . . . . . . . . . . . . . 15  |-  ( z  e.  NN  ->  z  e.  RR )
66 nnre 9753 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  y  e.  RR )
67 leloe 8908 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( z  <_  y  <->  ( z  <  y  \/  z  =  y ) ) )
6865, 66, 67syl2an 463 . . . . . . . . . . . . . 14  |-  ( ( z  e.  NN  /\  y  e.  NN )  ->  ( z  <_  y  <->  ( z  <  y  \/  z  =  y ) ) )
6964, 68bitr3d 246 . . . . . . . . . . . . 13  |-  ( ( z  e.  NN  /\  y  e.  NN )  ->  ( z  <  (
y  +  1 )  <-> 
( z  <  y  \/  z  =  y
) ) )
7069ancoms 439 . . . . . . . . . . . 12  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( z  <  (
y  +  1 )  <-> 
( z  <  y  \/  z  =  y
) ) )
7170imbi1d 308 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( ( z  < 
( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  <-> 
( ( z  < 
y  \/  z  =  y )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
72 jaob 758 . . . . . . . . . . 11  |-  ( ( ( z  <  y  \/  z  =  y
)  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  <-> 
( ( z  < 
y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  /\  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
7371, 72syl6bb 252 . . . . . . . . . 10  |-  ( ( y  e.  NN  /\  z  e.  NN )  ->  ( ( z  < 
( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  <-> 
( ( z  < 
y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  /\  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) ) )
7473ralbidva 2559 . . . . . . . . 9  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  (
y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  A. z  e.  NN  ( ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  /\  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) ) )
75 r19.26 2675 . . . . . . . . 9  |-  ( A. z  e.  NN  (
( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  /\  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) ) )  <-> 
( A. z  e.  NN  ( z  < 
y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) )  /\  A. z  e.  NN  ( z  =  y  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) ) )
7674, 75syl6bb 252 . . . . . . . 8  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  (
y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( A. z  e.  NN  (
z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  /  z
) )  /\  A. z  e.  NN  (
z  =  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) ) ) ) )
7763, 76sylibrd 225 . . . . . . 7  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  y  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  ->  A. z  e.  NN  ( z  <  (
y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) ) ) )
784, 7, 10, 10, 13, 77nnind 9764 . . . . . 6  |-  ( ( y  +  1 )  e.  NN  ->  A. z  e.  NN  ( z  < 
( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) )
791, 78syl 15 . . . . 5  |-  ( y  e.  NN  ->  A. z  e.  NN  ( z  < 
( y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2
)  =/=  ( x  /  z ) ) )
8066ltp1d 9687 . . . . 5  |-  ( y  e.  NN  ->  y  <  ( y  +  1 ) )
81 breq1 4026 . . . . . . 7  |-  ( z  =  y  ->  (
z  <  ( y  +  1 )  <->  y  <  ( y  +  1 ) ) )
82 df-ne 2448 . . . . . . . . . 10  |-  ( ( sqr `  2 )  =/=  ( x  / 
y )  <->  -.  ( sqr `  2 )  =  ( x  /  y
) )
8359, 82syl6bb 252 . . . . . . . . 9  |-  ( z  =  y  ->  (
( sqr `  2
)  =/=  ( x  /  z )  <->  -.  ( sqr `  2 )  =  ( x  /  y
) ) )
8483ralbidv 2563 . . . . . . . 8  |-  ( z  =  y  ->  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z )  <->  A. x  e.  ZZ  -.  ( sqr `  2 )  =  ( x  /  y
) ) )
85 ralnex 2553 . . . . . . . 8  |-  ( A. x  e.  ZZ  -.  ( sqr `  2 )  =  ( x  / 
y )  <->  -.  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y ) )
8684, 85syl6bb 252 . . . . . . 7  |-  ( z  =  y  ->  ( A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z )  <->  -.  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y ) ) )
8781, 86imbi12d 311 . . . . . 6  |-  ( z  =  y  ->  (
( z  <  (
y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  <->  ( y  <  ( y  +  1 )  ->  -.  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y ) ) ) )
8887rspcv 2880 . . . . 5  |-  ( y  e.  NN  ->  ( A. z  e.  NN  ( z  <  (
y  +  1 )  ->  A. x  e.  ZZ  ( sqr `  2 )  =/=  ( x  / 
z ) )  -> 
( y  <  (
y  +  1 )  ->  -.  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y ) ) ) )
8979, 80, 88mp2d 41 . . . 4  |-  ( y  e.  NN  ->  -.  E. x  e.  ZZ  ( sqr `  2 )  =  ( x  /  y
) )
9089nrex 2645 . . 3  |-  -.  E. y  e.  NN  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y )
91 elq 10318 . . . 4  |-  ( ( sqr `  2 )  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  ( sqr `  2
)  =  ( x  /  y ) )
92 rexcom 2701 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  NN  ( sqr `  2 )  =  ( x  /  y
)  <->  E. y  e.  NN  E. x  e.  ZZ  ( sqr `  2 )  =  ( x  /  y
) )
9391, 92bitri 240 . . 3  |-  ( ( sqr `  2 )  e.  QQ  <->  E. y  e.  NN  E. x  e.  ZZ  ( sqr `  2
)  =  ( x  /  y ) )
9490, 93mtbir 290 . 2  |-  -.  ( sqr `  2 )  e.  QQ
95 df-nel 2449 . 2  |-  ( ( sqr `  2 )  e/  QQ  <->  -.  ( sqr `  2 )  e.  QQ )
9694, 95mpbir 200 1  |-  ( sqr `  2 )  e/  QQ
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446    e/ wnel 2447   A.wral 2543   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    < clt 8867    <_ cle 8868    / cdiv 9423   NNcn 9746   2c2 9795   ZZcz 10024   QQcq 10316   RR+crp 10354   sqrcsqr 11718
This theorem is referenced by:  nthruc  12529
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721
  Copyright terms: Public domain W3C validator