MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrlem6 Unicode version

Theorem sqrlem6 11749
Description: Lemma for 01sqrex 11751. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
sqrlem1.1  |-  S  =  { x  e.  RR+  |  ( x ^ 2 )  <_  A }
sqrlem1.2  |-  B  =  sup ( S ,  RR ,  <  )
sqrlem5.3  |-  T  =  { y  |  E. a  e.  S  E. b  e.  S  y  =  ( a  x.  b ) }
Assertion
Ref Expression
sqrlem6  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( B ^ 2 )  <_  A )
Distinct variable groups:    a, b,
y, S    x, a, A, b, y    y, B
Allowed substitution hints:    B( x, a, b)    S( x)    T( x, y, a, b)

Proof of Theorem sqrlem6
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sqrlem1.1 . . . 4  |-  S  =  { x  e.  RR+  |  ( x ^ 2 )  <_  A }
2 sqrlem1.2 . . . 4  |-  B  =  sup ( S ,  RR ,  <  )
3 sqrlem5.3 . . . 4  |-  T  =  { y  |  E. a  e.  S  E. b  e.  S  y  =  ( a  x.  b ) }
41, 2, 3sqrlem5 11748 . . 3  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
( T  C_  RR  /\  T  =/=  (/)  /\  E. v  e.  RR  A. u  e.  T  u  <_  v )  /\  ( B ^ 2 )  =  sup ( T ,  RR ,  <  ) ) )
54simprd 449 . 2  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( B ^ 2 )  =  sup ( T ,  RR ,  <  ) )
6 vex 2804 . . . . . 6  |-  v  e. 
_V
7 eqeq1 2302 . . . . . . 7  |-  ( y  =  v  ->  (
y  =  ( a  x.  b )  <->  v  =  ( a  x.  b
) ) )
872rexbidv 2599 . . . . . 6  |-  ( y  =  v  ->  ( E. a  e.  S  E. b  e.  S  y  =  ( a  x.  b )  <->  E. a  e.  S  E. b  e.  S  v  =  ( a  x.  b
) ) )
96, 8, 3elab2 2930 . . . . 5  |-  ( v  e.  T  <->  E. a  e.  S  E. b  e.  S  v  =  ( a  x.  b
) )
10 oveq1 5881 . . . . . . . . . . . . . . . 16  |-  ( x  =  a  ->  (
x ^ 2 )  =  ( a ^
2 ) )
1110breq1d 4049 . . . . . . . . . . . . . . 15  |-  ( x  =  a  ->  (
( x ^ 2 )  <_  A  <->  ( a ^ 2 )  <_  A ) )
1211, 1elrab2 2938 . . . . . . . . . . . . . 14  |-  ( a  e.  S  <->  ( a  e.  RR+  /\  ( a ^ 2 )  <_  A ) )
1312simplbi 446 . . . . . . . . . . . . 13  |-  ( a  e.  S  ->  a  e.  RR+ )
14 oveq1 5881 . . . . . . . . . . . . . . . 16  |-  ( x  =  b  ->  (
x ^ 2 )  =  ( b ^
2 ) )
1514breq1d 4049 . . . . . . . . . . . . . . 15  |-  ( x  =  b  ->  (
( x ^ 2 )  <_  A  <->  ( b ^ 2 )  <_  A ) )
1615, 1elrab2 2938 . . . . . . . . . . . . . 14  |-  ( b  e.  S  <->  ( b  e.  RR+  /\  ( b ^ 2 )  <_  A ) )
1716simplbi 446 . . . . . . . . . . . . 13  |-  ( b  e.  S  ->  b  e.  RR+ )
18 rpre 10376 . . . . . . . . . . . . . . 15  |-  ( a  e.  RR+  ->  a  e.  RR )
1918adantr 451 . . . . . . . . . . . . . 14  |-  ( ( a  e.  RR+  /\  b  e.  RR+ )  ->  a  e.  RR )
20 rpre 10376 . . . . . . . . . . . . . . 15  |-  ( b  e.  RR+  ->  b  e.  RR )
2120adantl 452 . . . . . . . . . . . . . 14  |-  ( ( a  e.  RR+  /\  b  e.  RR+ )  ->  b  e.  RR )
22 rpgt0 10381 . . . . . . . . . . . . . . 15  |-  ( b  e.  RR+  ->  0  < 
b )
2322adantl 452 . . . . . . . . . . . . . 14  |-  ( ( a  e.  RR+  /\  b  e.  RR+ )  ->  0  <  b )
24 lemul1 9624 . . . . . . . . . . . . . 14  |-  ( ( a  e.  RR  /\  b  e.  RR  /\  (
b  e.  RR  /\  0  <  b ) )  ->  ( a  <_ 
b  <->  ( a  x.  b )  <_  (
b  x.  b ) ) )
2519, 21, 21, 23, 24syl112anc 1186 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR+  /\  b  e.  RR+ )  ->  (
a  <_  b  <->  ( a  x.  b )  <_  (
b  x.  b ) ) )
2613, 17, 25syl2an 463 . . . . . . . . . . . 12  |-  ( ( a  e.  S  /\  b  e.  S )  ->  ( a  <_  b  <->  ( a  x.  b )  <_  ( b  x.  b ) ) )
2717rpcnd 10408 . . . . . . . . . . . . . . 15  |-  ( b  e.  S  ->  b  e.  CC )
2827sqvald 11258 . . . . . . . . . . . . . 14  |-  ( b  e.  S  ->  (
b ^ 2 )  =  ( b  x.  b ) )
2928breq2d 4051 . . . . . . . . . . . . 13  |-  ( b  e.  S  ->  (
( a  x.  b
)  <_  ( b ^ 2 )  <->  ( a  x.  b )  <_  (
b  x.  b ) ) )
3029adantl 452 . . . . . . . . . . . 12  |-  ( ( a  e.  S  /\  b  e.  S )  ->  ( ( a  x.  b )  <_  (
b ^ 2 )  <-> 
( a  x.  b
)  <_  ( b  x.  b ) ) )
3126, 30bitr4d 247 . . . . . . . . . . 11  |-  ( ( a  e.  S  /\  b  e.  S )  ->  ( a  <_  b  <->  ( a  x.  b )  <_  ( b ^
2 ) ) )
3231adantl 452 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  <_  b  <->  ( a  x.  b )  <_  ( b ^
2 ) ) )
3316simprbi 450 . . . . . . . . . . . 12  |-  ( b  e.  S  ->  (
b ^ 2 )  <_  A )
3433ad2antll 709 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( b ^ 2 )  <_  A )
3513rpred 10406 . . . . . . . . . . . . . 14  |-  ( a  e.  S  ->  a  e.  RR )
3617rpred 10406 . . . . . . . . . . . . . 14  |-  ( b  e.  S  ->  b  e.  RR )
37 remulcl 8838 . . . . . . . . . . . . . 14  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( a  x.  b
)  e.  RR )
3835, 36, 37syl2an 463 . . . . . . . . . . . . 13  |-  ( ( a  e.  S  /\  b  e.  S )  ->  ( a  x.  b
)  e.  RR )
3938adantl 452 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  x.  b
)  e.  RR )
4036resqcld 11287 . . . . . . . . . . . . 13  |-  ( b  e.  S  ->  (
b ^ 2 )  e.  RR )
4140ad2antll 709 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( b ^ 2 )  e.  RR )
42 rpre 10376 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  A  e.  RR )
4342ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  ->  A  e.  RR )
44 letr 8930 . . . . . . . . . . . 12  |-  ( ( ( a  x.  b
)  e.  RR  /\  ( b ^ 2 )  e.  RR  /\  A  e.  RR )  ->  ( ( ( a  x.  b )  <_ 
( b ^ 2 )  /\  ( b ^ 2 )  <_  A )  ->  (
a  x.  b )  <_  A ) )
4539, 41, 43, 44syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( ( ( a  x.  b )  <_ 
( b ^ 2 )  /\  ( b ^ 2 )  <_  A )  ->  (
a  x.  b )  <_  A ) )
4634, 45mpan2d 655 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( ( a  x.  b )  <_  (
b ^ 2 )  ->  ( a  x.  b )  <_  A
) )
4732, 46sylbid 206 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  <_  b  ->  ( a  x.  b
)  <_  A )
)
48 rpgt0 10381 . . . . . . . . . . . . . . 15  |-  ( a  e.  RR+  ->  0  < 
a )
4948adantr 451 . . . . . . . . . . . . . 14  |-  ( ( a  e.  RR+  /\  b  e.  RR+ )  ->  0  <  a )
50 lemul2 9625 . . . . . . . . . . . . . 14  |-  ( ( b  e.  RR  /\  a  e.  RR  /\  (
a  e.  RR  /\  0  <  a ) )  ->  ( b  <_ 
a  <->  ( a  x.  b )  <_  (
a  x.  a ) ) )
5121, 19, 19, 49, 50syl112anc 1186 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR+  /\  b  e.  RR+ )  ->  (
b  <_  a  <->  ( a  x.  b )  <_  (
a  x.  a ) ) )
5213, 17, 51syl2an 463 . . . . . . . . . . . 12  |-  ( ( a  e.  S  /\  b  e.  S )  ->  ( b  <_  a  <->  ( a  x.  b )  <_  ( a  x.  a ) ) )
5313rpcnd 10408 . . . . . . . . . . . . . . 15  |-  ( a  e.  S  ->  a  e.  CC )
5453sqvald 11258 . . . . . . . . . . . . . 14  |-  ( a  e.  S  ->  (
a ^ 2 )  =  ( a  x.  a ) )
5554breq2d 4051 . . . . . . . . . . . . 13  |-  ( a  e.  S  ->  (
( a  x.  b
)  <_  ( a ^ 2 )  <->  ( a  x.  b )  <_  (
a  x.  a ) ) )
5655adantr 451 . . . . . . . . . . . 12  |-  ( ( a  e.  S  /\  b  e.  S )  ->  ( ( a  x.  b )  <_  (
a ^ 2 )  <-> 
( a  x.  b
)  <_  ( a  x.  a ) ) )
5752, 56bitr4d 247 . . . . . . . . . . 11  |-  ( ( a  e.  S  /\  b  e.  S )  ->  ( b  <_  a  <->  ( a  x.  b )  <_  ( a ^
2 ) ) )
5857adantl 452 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( b  <_  a  <->  ( a  x.  b )  <_  ( a ^
2 ) ) )
5912simprbi 450 . . . . . . . . . . . 12  |-  ( a  e.  S  ->  (
a ^ 2 )  <_  A )
6059ad2antrl 708 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a ^ 2 )  <_  A )
6135resqcld 11287 . . . . . . . . . . . . 13  |-  ( a  e.  S  ->  (
a ^ 2 )  e.  RR )
6261ad2antrl 708 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a ^ 2 )  e.  RR )
63 letr 8930 . . . . . . . . . . . 12  |-  ( ( ( a  x.  b
)  e.  RR  /\  ( a ^ 2 )  e.  RR  /\  A  e.  RR )  ->  ( ( ( a  x.  b )  <_ 
( a ^ 2 )  /\  ( a ^ 2 )  <_  A )  ->  (
a  x.  b )  <_  A ) )
6439, 62, 43, 63syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( ( ( a  x.  b )  <_ 
( a ^ 2 )  /\  ( a ^ 2 )  <_  A )  ->  (
a  x.  b )  <_  A ) )
6560, 64mpan2d 655 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( ( a  x.  b )  <_  (
a ^ 2 )  ->  ( a  x.  b )  <_  A
) )
6658, 65sylbid 206 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( b  <_  a  ->  ( a  x.  b
)  <_  A )
)
671, 2sqrlem3 11746 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( S  C_  RR  /\  S  =/=  (/)  /\  E. y  e.  RR  A. v  e.  S  v  <_  y
) )
6867simp1d 967 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  S  C_  RR )
6968sseld 3192 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
a  e.  S  -> 
a  e.  RR ) )
7068sseld 3192 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
b  e.  S  -> 
b  e.  RR ) )
7169, 70anim12d 546 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
( a  e.  S  /\  b  e.  S
)  ->  ( a  e.  RR  /\  b  e.  RR ) ) )
7271imp 418 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  e.  RR  /\  b  e.  RR ) )
73 letric 8937 . . . . . . . . . 10  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( a  <_  b  \/  b  <_  a ) )
7472, 73syl 15 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  <_  b  \/  b  <_  a ) )
7547, 66, 74mpjaod 370 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  x.  b
)  <_  A )
7675ex 423 . . . . . . 7  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
( a  e.  S  /\  b  e.  S
)  ->  ( a  x.  b )  <_  A
) )
77 breq1 4042 . . . . . . . 8  |-  ( v  =  ( a  x.  b )  ->  (
v  <_  A  <->  ( a  x.  b )  <_  A
) )
7877biimprcd 216 . . . . . . 7  |-  ( ( a  x.  b )  <_  A  ->  (
v  =  ( a  x.  b )  -> 
v  <_  A )
)
7976, 78syl6 29 . . . . . 6  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
( a  e.  S  /\  b  e.  S
)  ->  ( v  =  ( a  x.  b )  ->  v  <_  A ) ) )
8079rexlimdvv 2686 . . . . 5  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( E. a  e.  S  E. b  e.  S  v  =  ( a  x.  b )  ->  v  <_  A ) )
819, 80syl5bi 208 . . . 4  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
v  e.  T  -> 
v  <_  A )
)
8281ralrimiv 2638 . . 3  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  A. v  e.  T  v  <_  A )
834simpld 445 . . . 4  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( T  C_  RR  /\  T  =/=  (/)  /\  E. v  e.  RR  A. u  e.  T  u  <_  v
) )
8442adantr 451 . . . 4  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  A  e.  RR )
85 suprleub 9734 . . . 4  |-  ( ( ( T  C_  RR  /\  T  =/=  (/)  /\  E. v  e.  RR  A. u  e.  T  u  <_  v )  /\  A  e.  RR )  ->  ( sup ( T ,  RR ,  <  )  <_  A  <->  A. v  e.  T  v  <_  A ) )
8683, 84, 85syl2anc 642 . . 3  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( sup ( T ,  RR ,  <  )  <_  A  <->  A. v  e.  T  v  <_  A ) )
8782, 86mpbird 223 . 2  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  sup ( T ,  RR ,  <  )  <_  A )
885, 87eqbrtrd 4059 1  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( B ^ 2 )  <_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   {cab 2282    =/= wne 2459   A.wral 2556   E.wrex 2557   {crab 2560    C_ wss 3165   (/)c0 3468   class class class wbr 4039  (class class class)co 5874   supcsup 7209   RRcr 8752   0cc0 8753   1c1 8754    x. cmul 8758    < clt 8883    <_ cle 8884   2c2 9811   RR+crp 10370   ^cexp 11120
This theorem is referenced by:  sqrlem7  11750
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-seq 11063  df-exp 11121
  Copyright terms: Public domain W3C validator