MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrlem6 Structured version   Unicode version

Theorem sqrlem6 12045
Description: Lemma for 01sqrex 12047. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
sqrlem1.1  |-  S  =  { x  e.  RR+  |  ( x ^ 2 )  <_  A }
sqrlem1.2  |-  B  =  sup ( S ,  RR ,  <  )
sqrlem5.3  |-  T  =  { y  |  E. a  e.  S  E. b  e.  S  y  =  ( a  x.  b ) }
Assertion
Ref Expression
sqrlem6  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( B ^ 2 )  <_  A )
Distinct variable groups:    a, b,
y, S    x, a, A, b, y    y, B
Allowed substitution hints:    B( x, a, b)    S( x)    T( x, y, a, b)

Proof of Theorem sqrlem6
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sqrlem1.1 . . . 4  |-  S  =  { x  e.  RR+  |  ( x ^ 2 )  <_  A }
2 sqrlem1.2 . . . 4  |-  B  =  sup ( S ,  RR ,  <  )
3 sqrlem5.3 . . . 4  |-  T  =  { y  |  E. a  e.  S  E. b  e.  S  y  =  ( a  x.  b ) }
41, 2, 3sqrlem5 12044 . . 3  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
( T  C_  RR  /\  T  =/=  (/)  /\  E. v  e.  RR  A. u  e.  T  u  <_  v )  /\  ( B ^ 2 )  =  sup ( T ,  RR ,  <  ) ) )
54simprd 450 . 2  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( B ^ 2 )  =  sup ( T ,  RR ,  <  ) )
6 vex 2951 . . . . . 6  |-  v  e. 
_V
7 eqeq1 2441 . . . . . . 7  |-  ( y  =  v  ->  (
y  =  ( a  x.  b )  <->  v  =  ( a  x.  b
) ) )
872rexbidv 2740 . . . . . 6  |-  ( y  =  v  ->  ( E. a  e.  S  E. b  e.  S  y  =  ( a  x.  b )  <->  E. a  e.  S  E. b  e.  S  v  =  ( a  x.  b
) ) )
96, 8, 3elab2 3077 . . . . 5  |-  ( v  e.  T  <->  E. a  e.  S  E. b  e.  S  v  =  ( a  x.  b
) )
10 oveq1 6080 . . . . . . . . . . . . . . . 16  |-  ( x  =  a  ->  (
x ^ 2 )  =  ( a ^
2 ) )
1110breq1d 4214 . . . . . . . . . . . . . . 15  |-  ( x  =  a  ->  (
( x ^ 2 )  <_  A  <->  ( a ^ 2 )  <_  A ) )
1211, 1elrab2 3086 . . . . . . . . . . . . . 14  |-  ( a  e.  S  <->  ( a  e.  RR+  /\  ( a ^ 2 )  <_  A ) )
1312simplbi 447 . . . . . . . . . . . . 13  |-  ( a  e.  S  ->  a  e.  RR+ )
14 oveq1 6080 . . . . . . . . . . . . . . . 16  |-  ( x  =  b  ->  (
x ^ 2 )  =  ( b ^
2 ) )
1514breq1d 4214 . . . . . . . . . . . . . . 15  |-  ( x  =  b  ->  (
( x ^ 2 )  <_  A  <->  ( b ^ 2 )  <_  A ) )
1615, 1elrab2 3086 . . . . . . . . . . . . . 14  |-  ( b  e.  S  <->  ( b  e.  RR+  /\  ( b ^ 2 )  <_  A ) )
1716simplbi 447 . . . . . . . . . . . . 13  |-  ( b  e.  S  ->  b  e.  RR+ )
18 rpre 10610 . . . . . . . . . . . . . . 15  |-  ( a  e.  RR+  ->  a  e.  RR )
1918adantr 452 . . . . . . . . . . . . . 14  |-  ( ( a  e.  RR+  /\  b  e.  RR+ )  ->  a  e.  RR )
20 rpre 10610 . . . . . . . . . . . . . . 15  |-  ( b  e.  RR+  ->  b  e.  RR )
2120adantl 453 . . . . . . . . . . . . . 14  |-  ( ( a  e.  RR+  /\  b  e.  RR+ )  ->  b  e.  RR )
22 rpgt0 10615 . . . . . . . . . . . . . . 15  |-  ( b  e.  RR+  ->  0  < 
b )
2322adantl 453 . . . . . . . . . . . . . 14  |-  ( ( a  e.  RR+  /\  b  e.  RR+ )  ->  0  <  b )
24 lemul1 9854 . . . . . . . . . . . . . 14  |-  ( ( a  e.  RR  /\  b  e.  RR  /\  (
b  e.  RR  /\  0  <  b ) )  ->  ( a  <_ 
b  <->  ( a  x.  b )  <_  (
b  x.  b ) ) )
2519, 21, 21, 23, 24syl112anc 1188 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR+  /\  b  e.  RR+ )  ->  (
a  <_  b  <->  ( a  x.  b )  <_  (
b  x.  b ) ) )
2613, 17, 25syl2an 464 . . . . . . . . . . . 12  |-  ( ( a  e.  S  /\  b  e.  S )  ->  ( a  <_  b  <->  ( a  x.  b )  <_  ( b  x.  b ) ) )
2717rpcnd 10642 . . . . . . . . . . . . . . 15  |-  ( b  e.  S  ->  b  e.  CC )
2827sqvald 11512 . . . . . . . . . . . . . 14  |-  ( b  e.  S  ->  (
b ^ 2 )  =  ( b  x.  b ) )
2928breq2d 4216 . . . . . . . . . . . . 13  |-  ( b  e.  S  ->  (
( a  x.  b
)  <_  ( b ^ 2 )  <->  ( a  x.  b )  <_  (
b  x.  b ) ) )
3029adantl 453 . . . . . . . . . . . 12  |-  ( ( a  e.  S  /\  b  e.  S )  ->  ( ( a  x.  b )  <_  (
b ^ 2 )  <-> 
( a  x.  b
)  <_  ( b  x.  b ) ) )
3126, 30bitr4d 248 . . . . . . . . . . 11  |-  ( ( a  e.  S  /\  b  e.  S )  ->  ( a  <_  b  <->  ( a  x.  b )  <_  ( b ^
2 ) ) )
3231adantl 453 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  <_  b  <->  ( a  x.  b )  <_  ( b ^
2 ) ) )
3316simprbi 451 . . . . . . . . . . . 12  |-  ( b  e.  S  ->  (
b ^ 2 )  <_  A )
3433ad2antll 710 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( b ^ 2 )  <_  A )
3513rpred 10640 . . . . . . . . . . . . . 14  |-  ( a  e.  S  ->  a  e.  RR )
3617rpred 10640 . . . . . . . . . . . . . 14  |-  ( b  e.  S  ->  b  e.  RR )
37 remulcl 9067 . . . . . . . . . . . . . 14  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( a  x.  b
)  e.  RR )
3835, 36, 37syl2an 464 . . . . . . . . . . . . 13  |-  ( ( a  e.  S  /\  b  e.  S )  ->  ( a  x.  b
)  e.  RR )
3938adantl 453 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  x.  b
)  e.  RR )
4036resqcld 11541 . . . . . . . . . . . . 13  |-  ( b  e.  S  ->  (
b ^ 2 )  e.  RR )
4140ad2antll 710 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( b ^ 2 )  e.  RR )
42 rpre 10610 . . . . . . . . . . . . 13  |-  ( A  e.  RR+  ->  A  e.  RR )
4342ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  ->  A  e.  RR )
44 letr 9159 . . . . . . . . . . . 12  |-  ( ( ( a  x.  b
)  e.  RR  /\  ( b ^ 2 )  e.  RR  /\  A  e.  RR )  ->  ( ( ( a  x.  b )  <_ 
( b ^ 2 )  /\  ( b ^ 2 )  <_  A )  ->  (
a  x.  b )  <_  A ) )
4539, 41, 43, 44syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( ( ( a  x.  b )  <_ 
( b ^ 2 )  /\  ( b ^ 2 )  <_  A )  ->  (
a  x.  b )  <_  A ) )
4634, 45mpan2d 656 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( ( a  x.  b )  <_  (
b ^ 2 )  ->  ( a  x.  b )  <_  A
) )
4732, 46sylbid 207 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  <_  b  ->  ( a  x.  b
)  <_  A )
)
48 rpgt0 10615 . . . . . . . . . . . . . . 15  |-  ( a  e.  RR+  ->  0  < 
a )
4948adantr 452 . . . . . . . . . . . . . 14  |-  ( ( a  e.  RR+  /\  b  e.  RR+ )  ->  0  <  a )
50 lemul2 9855 . . . . . . . . . . . . . 14  |-  ( ( b  e.  RR  /\  a  e.  RR  /\  (
a  e.  RR  /\  0  <  a ) )  ->  ( b  <_ 
a  <->  ( a  x.  b )  <_  (
a  x.  a ) ) )
5121, 19, 19, 49, 50syl112anc 1188 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR+  /\  b  e.  RR+ )  ->  (
b  <_  a  <->  ( a  x.  b )  <_  (
a  x.  a ) ) )
5213, 17, 51syl2an 464 . . . . . . . . . . . 12  |-  ( ( a  e.  S  /\  b  e.  S )  ->  ( b  <_  a  <->  ( a  x.  b )  <_  ( a  x.  a ) ) )
5313rpcnd 10642 . . . . . . . . . . . . . . 15  |-  ( a  e.  S  ->  a  e.  CC )
5453sqvald 11512 . . . . . . . . . . . . . 14  |-  ( a  e.  S  ->  (
a ^ 2 )  =  ( a  x.  a ) )
5554breq2d 4216 . . . . . . . . . . . . 13  |-  ( a  e.  S  ->  (
( a  x.  b
)  <_  ( a ^ 2 )  <->  ( a  x.  b )  <_  (
a  x.  a ) ) )
5655adantr 452 . . . . . . . . . . . 12  |-  ( ( a  e.  S  /\  b  e.  S )  ->  ( ( a  x.  b )  <_  (
a ^ 2 )  <-> 
( a  x.  b
)  <_  ( a  x.  a ) ) )
5752, 56bitr4d 248 . . . . . . . . . . 11  |-  ( ( a  e.  S  /\  b  e.  S )  ->  ( b  <_  a  <->  ( a  x.  b )  <_  ( a ^
2 ) ) )
5857adantl 453 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( b  <_  a  <->  ( a  x.  b )  <_  ( a ^
2 ) ) )
5912simprbi 451 . . . . . . . . . . . 12  |-  ( a  e.  S  ->  (
a ^ 2 )  <_  A )
6059ad2antrl 709 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a ^ 2 )  <_  A )
6135resqcld 11541 . . . . . . . . . . . . 13  |-  ( a  e.  S  ->  (
a ^ 2 )  e.  RR )
6261ad2antrl 709 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a ^ 2 )  e.  RR )
63 letr 9159 . . . . . . . . . . . 12  |-  ( ( ( a  x.  b
)  e.  RR  /\  ( a ^ 2 )  e.  RR  /\  A  e.  RR )  ->  ( ( ( a  x.  b )  <_ 
( a ^ 2 )  /\  ( a ^ 2 )  <_  A )  ->  (
a  x.  b )  <_  A ) )
6439, 62, 43, 63syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( ( ( a  x.  b )  <_ 
( a ^ 2 )  /\  ( a ^ 2 )  <_  A )  ->  (
a  x.  b )  <_  A ) )
6560, 64mpan2d 656 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( ( a  x.  b )  <_  (
a ^ 2 )  ->  ( a  x.  b )  <_  A
) )
6658, 65sylbid 207 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( b  <_  a  ->  ( a  x.  b
)  <_  A )
)
671, 2sqrlem3 12042 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( S  C_  RR  /\  S  =/=  (/)  /\  E. y  e.  RR  A. v  e.  S  v  <_  y
) )
6867simp1d 969 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  S  C_  RR )
6968sseld 3339 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
a  e.  S  -> 
a  e.  RR ) )
7068sseld 3339 . . . . . . . . . . . 12  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
b  e.  S  -> 
b  e.  RR ) )
7169, 70anim12d 547 . . . . . . . . . . 11  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
( a  e.  S  /\  b  e.  S
)  ->  ( a  e.  RR  /\  b  e.  RR ) ) )
7271imp 419 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  e.  RR  /\  b  e.  RR ) )
73 letric 9166 . . . . . . . . . 10  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( a  <_  b  \/  b  <_  a ) )
7472, 73syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  <_  b  \/  b  <_  a ) )
7547, 66, 74mpjaod 371 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  A  <_  1 )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  x.  b
)  <_  A )
7675ex 424 . . . . . . 7  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
( a  e.  S  /\  b  e.  S
)  ->  ( a  x.  b )  <_  A
) )
77 breq1 4207 . . . . . . . 8  |-  ( v  =  ( a  x.  b )  ->  (
v  <_  A  <->  ( a  x.  b )  <_  A
) )
7877biimprcd 217 . . . . . . 7  |-  ( ( a  x.  b )  <_  A  ->  (
v  =  ( a  x.  b )  -> 
v  <_  A )
)
7976, 78syl6 31 . . . . . 6  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
( a  e.  S  /\  b  e.  S
)  ->  ( v  =  ( a  x.  b )  ->  v  <_  A ) ) )
8079rexlimdvv 2828 . . . . 5  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( E. a  e.  S  E. b  e.  S  v  =  ( a  x.  b )  ->  v  <_  A ) )
819, 80syl5bi 209 . . . 4  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  (
v  e.  T  -> 
v  <_  A )
)
8281ralrimiv 2780 . . 3  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  A. v  e.  T  v  <_  A )
834simpld 446 . . . 4  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( T  C_  RR  /\  T  =/=  (/)  /\  E. v  e.  RR  A. u  e.  T  u  <_  v
) )
8442adantr 452 . . . 4  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  A  e.  RR )
85 suprleub 9964 . . . 4  |-  ( ( ( T  C_  RR  /\  T  =/=  (/)  /\  E. v  e.  RR  A. u  e.  T  u  <_  v )  /\  A  e.  RR )  ->  ( sup ( T ,  RR ,  <  )  <_  A  <->  A. v  e.  T  v  <_  A ) )
8683, 84, 85syl2anc 643 . . 3  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( sup ( T ,  RR ,  <  )  <_  A  <->  A. v  e.  T  v  <_  A ) )
8782, 86mpbird 224 . 2  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  sup ( T ,  RR ,  <  )  <_  A )
885, 87eqbrtrd 4224 1  |-  ( ( A  e.  RR+  /\  A  <_  1 )  ->  ( B ^ 2 )  <_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   {cab 2421    =/= wne 2598   A.wral 2697   E.wrex 2698   {crab 2701    C_ wss 3312   (/)c0 3620   class class class wbr 4204  (class class class)co 6073   supcsup 7437   RRcr 8981   0cc0 8982   1c1 8983    x. cmul 8987    < clt 9112    <_ cle 9113   2c2 10041   RR+crp 10604   ^cexp 11374
This theorem is referenced by:  sqrlem7  12046
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-seq 11316  df-exp 11375
  Copyright terms: Public domain W3C validator