MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrmo Unicode version

Theorem sqrmo 11753
Description: Uniqueness for the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
sqrmo  |-  ( A  e.  CC  ->  E* x  e.  CC (
( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ ) )
Distinct variable group:    x, A

Proof of Theorem sqrmo
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simplr1 997 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
x ^ 2 )  =  A )
2 simprr1 1003 . . . . . . . . . . . 12  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
y ^ 2 )  =  A )
31, 2eqtr4d 2331 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
x ^ 2 )  =  ( y ^
2 ) )
4 sqeqor 11233 . . . . . . . . . . . 12  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x ^
2 )  =  ( y ^ 2 )  <-> 
( x  =  y  \/  x  =  -u y ) ) )
54ad2ant2r 727 . . . . . . . . . . 11  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
( x ^ 2 )  =  ( y ^ 2 )  <->  ( x  =  y  \/  x  =  -u y ) ) )
63, 5mpbid 201 . . . . . . . . . 10  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
x  =  y  \/  x  =  -u y
) )
76ord 366 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  ( -.  x  =  y  ->  x  =  -u y
) )
8 3simpc 954 . . . . . . . . . . 11  |-  ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  ->  (
0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ ) )
9 fveq2 5541 . . . . . . . . . . . . 13  |-  ( x  =  -u y  ->  (
Re `  x )  =  ( Re `  -u y ) )
109breq2d 4051 . . . . . . . . . . . 12  |-  ( x  =  -u y  ->  (
0  <_  ( Re `  x )  <->  0  <_  ( Re `  -u y
) ) )
11 oveq2 5882 . . . . . . . . . . . . 13  |-  ( x  =  -u y  ->  (
_i  x.  x )  =  ( _i  x.  -u y ) )
12 neleq1 2550 . . . . . . . . . . . . 13  |-  ( ( _i  x.  x )  =  ( _i  x.  -u y )  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  -u y )  e/  RR+ ) )
1311, 12syl 15 . . . . . . . . . . . 12  |-  ( x  =  -u y  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  -u y )  e/  RR+ ) )
1410, 13anbi12d 691 . . . . . . . . . . 11  |-  ( x  =  -u y  ->  (
( 0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ )  <->  ( 0  <_  ( Re `  -u y )  /\  (
_i  x.  -u y )  e/  RR+ ) ) )
158, 14syl5ibcom 211 . . . . . . . . . 10  |-  ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  ->  (
x  =  -u y  ->  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
1615ad2antlr 707 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
x  =  -u y  ->  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
177, 16syld 40 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  ( -.  x  =  y  ->  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
18 negeq 9060 . . . . . . . . . . . . . . 15  |-  ( y  =  0  ->  -u y  =  -u 0 )
19 neg0 9109 . . . . . . . . . . . . . . 15  |-  -u 0  =  0
2018, 19syl6eq 2344 . . . . . . . . . . . . . 14  |-  ( y  =  0  ->  -u y  =  0 )
2120eqeq2d 2307 . . . . . . . . . . . . 13  |-  ( y  =  0  ->  (
x  =  -u y  <->  x  =  0 ) )
22 eqeq2 2305 . . . . . . . . . . . . 13  |-  ( y  =  0  ->  (
x  =  y  <->  x  = 
0 ) )
2321, 22bitr4d 247 . . . . . . . . . . . 12  |-  ( y  =  0  ->  (
x  =  -u y  <->  x  =  y ) )
2423biimpcd 215 . . . . . . . . . . 11  |-  ( x  =  -u y  ->  (
y  =  0  ->  x  =  y )
)
2524necon3bd 2496 . . . . . . . . . 10  |-  ( x  =  -u y  ->  ( -.  x  =  y  ->  y  =/=  0 ) )
267, 25syli 33 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  ( -.  x  =  y  ->  y  =/=  0 ) )
27 3simpc 954 . . . . . . . . . . . 12  |-  ( ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ )  ->  (
0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ ) )
28 cnpart 11741 . . . . . . . . . . . 12  |-  ( ( y  e.  CC  /\  y  =/=  0 )  -> 
( ( 0  <_ 
( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )  <->  -.  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
2927, 28syl5ib 210 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  y  =/=  0 )  -> 
( ( ( y ^ 2 )  =  A  /\  0  <_ 
( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )  ->  -.  ( 0  <_ 
( Re `  -u y
)  /\  ( _i  x.  -u y )  e/  RR+ ) ) )
3029impancom 427 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  ( ( y ^
2 )  =  A  /\  0  <_  (
Re `  y )  /\  ( _i  x.  y
)  e/  RR+ ) )  ->  ( y  =/=  0  ->  -.  (
0  <_  ( Re `  -u y )  /\  (
_i  x.  -u y )  e/  RR+ ) ) )
3130adantl 452 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  (
y  =/=  0  ->  -.  ( 0  <_  (
Re `  -u y )  /\  ( _i  x.  -u y )  e/  RR+ )
) )
3226, 31syld 40 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  ( -.  x  =  y  ->  -.  ( 0  <_ 
( Re `  -u y
)  /\  ( _i  x.  -u y )  e/  RR+ ) ) )
3317, 32pm2.65d 166 . . . . . . 7  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  -.  -.  x  =  y
)
3433notnotrd 105 . . . . . 6  |-  ( ( ( x  e.  CC  /\  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  /\  ( y  e.  CC  /\  ( ( y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )  ->  x  =  y )
3534an4s 799 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )  /\  ( ( y ^
2 )  =  A  /\  0  <_  (
Re `  y )  /\  ( _i  x.  y
)  e/  RR+ ) ) )  ->  x  =  y )
3635ex 423 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x
)  /\  ( _i  x.  x )  e/  RR+ )  /\  ( ( y ^
2 )  =  A  /\  0  <_  (
Re `  y )  /\  ( _i  x.  y
)  e/  RR+ ) )  ->  x  =  y ) )
3736a1i 10 . . 3  |-  ( A  e.  CC  ->  (
( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  /\  (
( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ ) )  ->  x  =  y )
) )
3837ralrimivv 2647 . 2  |-  ( A  e.  CC  ->  A. x  e.  CC  A. y  e.  CC  ( ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  /\  (
( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ ) )  ->  x  =  y )
)
39 oveq1 5881 . . . . 5  |-  ( x  =  y  ->  (
x ^ 2 )  =  ( y ^
2 ) )
4039eqeq1d 2304 . . . 4  |-  ( x  =  y  ->  (
( x ^ 2 )  =  A  <->  ( y ^ 2 )  =  A ) )
41 fveq2 5541 . . . . 5  |-  ( x  =  y  ->  (
Re `  x )  =  ( Re `  y ) )
4241breq2d 4051 . . . 4  |-  ( x  =  y  ->  (
0  <_  ( Re `  x )  <->  0  <_  ( Re `  y ) ) )
43 oveq2 5882 . . . . 5  |-  ( x  =  y  ->  (
_i  x.  x )  =  ( _i  x.  y ) )
44 neleq1 2550 . . . . 5  |-  ( ( _i  x.  x )  =  ( _i  x.  y )  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  y )  e/  RR+ )
)
4543, 44syl 15 . . . 4  |-  ( x  =  y  ->  (
( _i  x.  x
)  e/  RR+  <->  ( _i  x.  y )  e/  RR+ )
)
4640, 42, 453anbi123d 1252 . . 3  |-  ( x  =  y  ->  (
( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ )  <->  ( (
y ^ 2 )  =  A  /\  0  <_  ( Re `  y
)  /\  ( _i  x.  y )  e/  RR+ )
) )
4746rmo4 2971 . 2  |-  ( E* x  e.  CC ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  <->  A. x  e.  CC  A. y  e.  CC  ( ( ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  /\  (
( y ^ 2 )  =  A  /\  0  <_  ( Re `  y )  /\  (
_i  x.  y )  e/  RR+ ) )  ->  x  =  y )
)
4838, 47sylibr 203 1  |-  ( A  e.  CC  ->  E* x  e.  CC (
( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459    e/ wnel 2460   A.wral 2556   E*wrmo 2559   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   CCcc 8751   0cc0 8753   _ici 8755    x. cmul 8758    <_ cle 8884   -ucneg 9054   2c2 9811   RR+crp 10370   ^cexp 11120   Recre 11598
This theorem is referenced by:  resqreu  11754  sqrneg  11769  sqreu  11860
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602
  Copyright terms: Public domain W3C validator