MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrthlem Unicode version

Theorem sqrthlem 12095
Description: Lemma for sqrth 12097. (Contributed by Mario Carneiro, 10-Jul-2013.)
Assertion
Ref Expression
sqrthlem  |-  ( A  e.  CC  ->  (
( ( sqr `  A
) ^ 2 )  =  A  /\  0  <_  ( Re `  ( sqr `  A ) )  /\  ( _i  x.  ( sqr `  A ) )  e/  RR+ )
)

Proof of Theorem sqrthlem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sqrval 11971 . . 3  |-  ( A  e.  CC  ->  ( sqr `  A )  =  ( iota_ x  e.  CC ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) ) )
21eqcomd 2394 . 2  |-  ( A  e.  CC  ->  ( iota_ x  e.  CC ( ( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ ) )  =  ( sqr `  A
) )
3 sqrcl 12094 . . 3  |-  ( A  e.  CC  ->  ( sqr `  A )  e.  CC )
4 sqreu 12093 . . 3  |-  ( A  e.  CC  ->  E! x  e.  CC  (
( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ ) )
5 oveq1 6029 . . . . . 6  |-  ( x  =  ( sqr `  A
)  ->  ( x ^ 2 )  =  ( ( sqr `  A
) ^ 2 ) )
65eqeq1d 2397 . . . . 5  |-  ( x  =  ( sqr `  A
)  ->  ( (
x ^ 2 )  =  A  <->  ( ( sqr `  A ) ^
2 )  =  A ) )
7 fveq2 5670 . . . . . 6  |-  ( x  =  ( sqr `  A
)  ->  ( Re `  x )  =  ( Re `  ( sqr `  A ) ) )
87breq2d 4167 . . . . 5  |-  ( x  =  ( sqr `  A
)  ->  ( 0  <_  ( Re `  x )  <->  0  <_  ( Re `  ( sqr `  A ) ) ) )
9 oveq2 6030 . . . . . 6  |-  ( x  =  ( sqr `  A
)  ->  ( _i  x.  x )  =  ( _i  x.  ( sqr `  A ) ) )
10 neleq1 2645 . . . . . 6  |-  ( ( _i  x.  x )  =  ( _i  x.  ( sqr `  A ) )  ->  ( (
_i  x.  x )  e/  RR+  <->  ( _i  x.  ( sqr `  A ) )  e/  RR+ )
)
119, 10syl 16 . . . . 5  |-  ( x  =  ( sqr `  A
)  ->  ( (
_i  x.  x )  e/  RR+  <->  ( _i  x.  ( sqr `  A ) )  e/  RR+ )
)
126, 8, 113anbi123d 1254 . . . 4  |-  ( x  =  ( sqr `  A
)  ->  ( (
( x ^ 2 )  =  A  /\  0  <_  ( Re `  x )  /\  (
_i  x.  x )  e/  RR+ )  <->  ( (
( sqr `  A
) ^ 2 )  =  A  /\  0  <_  ( Re `  ( sqr `  A ) )  /\  ( _i  x.  ( sqr `  A ) )  e/  RR+ )
) )
1312riota2 6510 . . 3  |-  ( ( ( sqr `  A
)  e.  CC  /\  E! x  e.  CC  ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  ->  ( ( ( ( sqr `  A
) ^ 2 )  =  A  /\  0  <_  ( Re `  ( sqr `  A ) )  /\  ( _i  x.  ( sqr `  A ) )  e/  RR+ )  <->  (
iota_ x  e.  CC ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  =  ( sqr `  A
) ) )
143, 4, 13syl2anc 643 . 2  |-  ( A  e.  CC  ->  (
( ( ( sqr `  A ) ^ 2 )  =  A  /\  0  <_  ( Re `  ( sqr `  A ) )  /\  ( _i  x.  ( sqr `  A
) )  e/  RR+ )  <->  (
iota_ x  e.  CC ( ( x ^
2 )  =  A  /\  0  <_  (
Re `  x )  /\  ( _i  x.  x
)  e/  RR+ ) )  =  ( sqr `  A
) ) )
152, 14mpbird 224 1  |-  ( A  e.  CC  ->  (
( ( sqr `  A
) ^ 2 )  =  A  /\  0  <_  ( Re `  ( sqr `  A ) )  /\  ( _i  x.  ( sqr `  A ) )  e/  RR+ )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1649    e. wcel 1717    e/ wnel 2553   E!wreu 2653   class class class wbr 4155   ` cfv 5396  (class class class)co 6022   iota_crio 6480   CCcc 8923   0cc0 8925   _ici 8927    x. cmul 8930    <_ cle 9056   2c2 9983   RR+crp 10546   ^cexp 11311   Recre 11831   sqrcsqr 11967
This theorem is referenced by:  sqrth  12097  sqrrege0  12098  eqsqrd  12100
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002  ax-pre-sup 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-er 6843  df-en 7048  df-dom 7049  df-sdom 7050  df-sup 7383  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-div 9612  df-nn 9935  df-2 9992  df-3 9993  df-n0 10156  df-z 10217  df-uz 10423  df-rp 10547  df-seq 11253  df-exp 11312  df-cj 11833  df-re 11834  df-im 11835  df-sqr 11969  df-abs 11970
  Copyright terms: Public domain W3C validator