MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sraassa Unicode version

Theorem sraassa 16065
Description: The subring algebra over a commutative ring is an associative algebra. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypothesis
Ref Expression
sraassa.a  |-  A  =  ( ( subringAlg  `  W ) `
 S )
Assertion
Ref Expression
sraassa  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  A  e. AssAlg )

Proof of Theorem sraassa
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sraassa.a . . . 4  |-  A  =  ( ( subringAlg  `  W ) `
 S )
21a1i 10 . . 3  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  A  =  ( ( subringAlg  `  W ) `
 S ) )
3 eqid 2283 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
43subrgss 15546 . . . 4  |-  ( S  e.  (SubRing `  W
)  ->  S  C_  ( Base `  W ) )
54adantl 452 . . 3  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  S  C_  ( Base `  W ) )
62, 5srabase 15931 . 2  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  ( Base `  W )  =  (
Base `  A )
)
72, 5srasca 15934 . 2  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  ( Ws  S
)  =  (Scalar `  A ) )
8 eqid 2283 . . . 4  |-  ( Ws  S )  =  ( Ws  S )
98subrgbas 15554 . . 3  |-  ( S  e.  (SubRing `  W
)  ->  S  =  ( Base `  ( Ws  S
) ) )
109adantl 452 . 2  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  S  =  ( Base `  ( Ws  S
) ) )
112, 5sravsca 15935 . 2  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  ( .r `  W )  =  ( .s `  A ) )
122, 5sramulr 15933 . 2  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  ( .r `  W )  =  ( .r `  A ) )
131sralmod 15939 . . 3  |-  ( S  e.  (SubRing `  W
)  ->  A  e.  LMod )
1413adantl 452 . 2  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  A  e.  LMod )
15 crngrng 15351 . . . 4  |-  ( W  e.  CRing  ->  W  e.  Ring )
1615adantr 451 . . 3  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  W  e.  Ring )
17 eqidd 2284 . . . 4  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  ( Base `  W )  =  (
Base `  W )
)
182, 5sraaddg 15932 . . . . 5  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  ( +g  `  W )  =  ( +g  `  A ) )
1918proplem3 13593 . . . 4  |-  ( ( ( W  e.  CRing  /\  S  e.  (SubRing `  W
) )  /\  (
x  e.  ( Base `  W )  /\  y  e.  ( Base `  W
) ) )  -> 
( x ( +g  `  W ) y )  =  ( x ( +g  `  A ) y ) )
2012proplem3 13593 . . . 4  |-  ( ( ( W  e.  CRing  /\  S  e.  (SubRing `  W
) )  /\  (
x  e.  ( Base `  W )  /\  y  e.  ( Base `  W
) ) )  -> 
( x ( .r
`  W ) y )  =  ( x ( .r `  A
) y ) )
2117, 6, 19, 20rngpropd 15372 . . 3  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  ( W  e.  Ring  <->  A  e.  Ring ) )
2216, 21mpbid 201 . 2  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  A  e.  Ring )
238subrgcrng 15549 . 2  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  ( Ws  S
)  e.  CRing )
2416adantr 451 . . 3  |-  ( ( ( W  e.  CRing  /\  S  e.  (SubRing `  W
) )  /\  (
x  e.  S  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W
) ) )  ->  W  e.  Ring )
255adantr 451 . . . 4  |-  ( ( ( W  e.  CRing  /\  S  e.  (SubRing `  W
) )  /\  (
x  e.  S  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W
) ) )  ->  S  C_  ( Base `  W
) )
26 simpr1 961 . . . 4  |-  ( ( ( W  e.  CRing  /\  S  e.  (SubRing `  W
) )  /\  (
x  e.  S  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W
) ) )  ->  x  e.  S )
2725, 26sseldd 3181 . . 3  |-  ( ( ( W  e.  CRing  /\  S  e.  (SubRing `  W
) )  /\  (
x  e.  S  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W
) ) )  ->  x  e.  ( Base `  W ) )
28 simpr2 962 . . 3  |-  ( ( ( W  e.  CRing  /\  S  e.  (SubRing `  W
) )  /\  (
x  e.  S  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W
) ) )  -> 
y  e.  ( Base `  W ) )
29 simpr3 963 . . 3  |-  ( ( ( W  e.  CRing  /\  S  e.  (SubRing `  W
) )  /\  (
x  e.  S  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W
) ) )  -> 
z  e.  ( Base `  W ) )
30 eqid 2283 . . . 4  |-  ( .r
`  W )  =  ( .r `  W
)
313, 30rngass 15357 . . 3  |-  ( ( W  e.  Ring  /\  (
x  e.  ( Base `  W )  /\  y  e.  ( Base `  W
)  /\  z  e.  ( Base `  W )
) )  ->  (
( x ( .r
`  W ) y ) ( .r `  W ) z )  =  ( x ( .r `  W ) ( y ( .r
`  W ) z ) ) )
3224, 27, 28, 29, 31syl13anc 1184 . 2  |-  ( ( ( W  e.  CRing  /\  S  e.  (SubRing `  W
) )  /\  (
x  e.  S  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W
) ) )  -> 
( ( x ( .r `  W ) y ) ( .r
`  W ) z )  =  ( x ( .r `  W
) ( y ( .r `  W ) z ) ) )
33 eqid 2283 . . . . 5  |-  (mulGrp `  W )  =  (mulGrp `  W )
3433crngmgp 15349 . . . 4  |-  ( W  e.  CRing  ->  (mulGrp `  W
)  e. CMnd )
3534ad2antrr 706 . . 3  |-  ( ( ( W  e.  CRing  /\  S  e.  (SubRing `  W
) )  /\  (
x  e.  S  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W
) ) )  -> 
(mulGrp `  W )  e. CMnd )
3633, 3mgpbas 15331 . . . 4  |-  ( Base `  W )  =  (
Base `  (mulGrp `  W
) )
3733, 30mgpplusg 15329 . . . 4  |-  ( .r
`  W )  =  ( +g  `  (mulGrp `  W ) )
3836, 37cmn12 15109 . . 3  |-  ( ( (mulGrp `  W )  e. CMnd  /\  ( y  e.  ( Base `  W
)  /\  x  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( y
( .r `  W
) ( x ( .r `  W ) z ) )  =  ( x ( .r
`  W ) ( y ( .r `  W ) z ) ) )
3935, 28, 27, 29, 38syl13anc 1184 . 2  |-  ( ( ( W  e.  CRing  /\  S  e.  (SubRing `  W
) )  /\  (
x  e.  S  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W
) ) )  -> 
( y ( .r
`  W ) ( x ( .r `  W ) z ) )  =  ( x ( .r `  W
) ( y ( .r `  W ) z ) ) )
406, 7, 10, 11, 12, 14, 22, 23, 32, 39isassad 16063 1  |-  ( ( W  e.  CRing  /\  S  e.  (SubRing `  W )
)  ->  A  e. AssAlg )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    C_ wss 3152   ` cfv 5255  (class class class)co 5858   Basecbs 13148   ↾s cress 13149   +g cplusg 13208   .rcmulr 13209  CMndccmn 15089  mulGrpcmgp 15325   Ringcrg 15337   CRingccrg 15338  SubRingcsubrg 15541   LModclmod 15627   subringAlg csra 15921  AssAlgcasa 16050
This theorem is referenced by:  rlmassa  16066
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-0g 13404  df-mnd 14367  df-grp 14489  df-subg 14618  df-cmn 15091  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-subrg 15543  df-lmod 15629  df-sra 15925  df-assa 16053
  Copyright terms: Public domain W3C validator