MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sralem Unicode version

Theorem sralem 15930
Description: Lemma for srabase 15931 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
srapart.a  |-  ( ph  ->  A  =  ( ( subringAlg  `  W ) `  S
) )
srapart.s  |-  ( ph  ->  S  C_  ( Base `  W ) )
sralem.1  |-  E  = Slot 
N
sralem.2  |-  N  e.  NN
sralem.3  |-  ( N  <  5  \/  6  <  N )
Assertion
Ref Expression
sralem  |-  ( ph  ->  ( E `  W
)  =  ( E `
 A ) )

Proof of Theorem sralem
StepHypRef Expression
1 srapart.a . . . . . 6  |-  ( ph  ->  A  =  ( ( subringAlg  `  W ) `  S
) )
21adantl 452 . . . . 5  |-  ( ( W  e.  _V  /\  ph )  ->  A  =  ( ( subringAlg  `  W ) `
 S ) )
3 srapart.s . . . . . 6  |-  ( ph  ->  S  C_  ( Base `  W ) )
4 sraval 15929 . . . . . 6  |-  ( ( W  e.  _V  /\  S  C_  ( Base `  W
) )  ->  (
( subringAlg  `  W ) `  S )  =  ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )
)
53, 4sylan2 460 . . . . 5  |-  ( ( W  e.  _V  /\  ph )  ->  ( ( subringAlg  `  W ) `  S
)  =  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) )
62, 5eqtrd 2315 . . . 4  |-  ( ( W  e.  _V  /\  ph )  ->  A  =  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )
)
76fveq2d 5529 . . 3  |-  ( ( W  e.  _V  /\  ph )  ->  ( E `  A )  =  ( E `  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) ) )
8 sralem.1 . . . . . 6  |-  E  = Slot 
N
9 sralem.2 . . . . . 6  |-  N  e.  NN
108, 9ndxid 13169 . . . . 5  |-  E  = Slot  ( E `  ndx )
11 sralem.3 . . . . . . 7  |-  ( N  <  5  \/  6  <  N )
129nnrei 9755 . . . . . . . . . 10  |-  N  e.  RR
13 5re 9821 . . . . . . . . . 10  |-  5  e.  RR
1412, 13ltnei 8943 . . . . . . . . 9  |-  ( N  <  5  ->  5  =/=  N )
1514necomd 2529 . . . . . . . 8  |-  ( N  <  5  ->  N  =/=  5 )
16 5lt6 9896 . . . . . . . . . 10  |-  5  <  6
17 6re 9822 . . . . . . . . . . 11  |-  6  e.  RR
1813, 17, 12lttri 8945 . . . . . . . . . 10  |-  ( ( 5  <  6  /\  6  <  N )  ->  5  <  N
)
1916, 18mpan 651 . . . . . . . . 9  |-  ( 6  <  N  ->  5  <  N )
2013, 12ltnei 8943 . . . . . . . . 9  |-  ( 5  <  N  ->  N  =/=  5 )
2119, 20syl 15 . . . . . . . 8  |-  ( 6  <  N  ->  N  =/=  5 )
2215, 21jaoi 368 . . . . . . 7  |-  ( ( N  <  5  \/  6  <  N )  ->  N  =/=  5
)
2311, 22ax-mp 8 . . . . . 6  |-  N  =/=  5
248, 9ndxarg 13168 . . . . . . 7  |-  ( E `
 ndx )  =  N
25 scandx 13268 . . . . . . 7  |-  (Scalar `  ndx )  =  5
2624, 25neeq12i 2458 . . . . . 6  |-  ( ( E `  ndx )  =/=  (Scalar `  ndx )  <->  N  =/=  5 )
2723, 26mpbir 200 . . . . 5  |-  ( E `
 ndx )  =/=  (Scalar `  ndx )
2810, 27setsnid 13188 . . . 4  |-  ( E `
 W )  =  ( E `  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) )
2912, 13, 17lttri 8945 . . . . . . . . . . 11  |-  ( ( N  <  5  /\  5  <  6 )  ->  N  <  6
)
3016, 29mpan2 652 . . . . . . . . . 10  |-  ( N  <  5  ->  N  <  6 )
3112, 17ltnei 8943 . . . . . . . . . 10  |-  ( N  <  6  ->  6  =/=  N )
3230, 31syl 15 . . . . . . . . 9  |-  ( N  <  5  ->  6  =/=  N )
3332necomd 2529 . . . . . . . 8  |-  ( N  <  5  ->  N  =/=  6 )
3417, 12ltnei 8943 . . . . . . . 8  |-  ( 6  <  N  ->  N  =/=  6 )
3533, 34jaoi 368 . . . . . . 7  |-  ( ( N  <  5  \/  6  <  N )  ->  N  =/=  6
)
3611, 35ax-mp 8 . . . . . 6  |-  N  =/=  6
37 vscandx 13270 . . . . . . 7  |-  ( .s
`  ndx )  =  6
3824, 37neeq12i 2458 . . . . . 6  |-  ( ( E `  ndx )  =/=  ( .s `  ndx ) 
<->  N  =/=  6 )
3936, 38mpbir 200 . . . . 5  |-  ( E `
 ndx )  =/=  ( .s `  ndx )
4010, 39setsnid 13188 . . . 4  |-  ( E `
 ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. )
)  =  ( E `
 ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )
)
4128, 40eqtri 2303 . . 3  |-  ( E `
 W )  =  ( E `  (
( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) )
427, 41syl6reqr 2334 . 2  |-  ( ( W  e.  _V  /\  ph )  ->  ( E `  W )  =  ( E `  A ) )
438str0 13184 . . 3  |-  (/)  =  ( E `  (/) )
44 fvprc 5519 . . . 4  |-  ( -.  W  e.  _V  ->  ( E `  W )  =  (/) )
4544adantr 451 . . 3  |-  ( ( -.  W  e.  _V  /\ 
ph )  ->  ( E `  W )  =  (/) )
46 fvprc 5519 . . . . . . 7  |-  ( -.  W  e.  _V  ->  ( subringAlg  `  W )  =  (/) )
4746fveq1d 5527 . . . . . 6  |-  ( -.  W  e.  _V  ->  ( ( subringAlg  `  W ) `  S )  =  (
(/) `  S )
)
48 fv01 5559 . . . . . 6  |-  ( (/) `  S )  =  (/)
4947, 48syl6eq 2331 . . . . 5  |-  ( -.  W  e.  _V  ->  ( ( subringAlg  `  W ) `  S )  =  (/) )
501, 49sylan9eqr 2337 . . . 4  |-  ( ( -.  W  e.  _V  /\ 
ph )  ->  A  =  (/) )
5150fveq2d 5529 . . 3  |-  ( ( -.  W  e.  _V  /\ 
ph )  ->  ( E `  A )  =  ( E `  (/) ) )
5243, 45, 513eqtr4a 2341 . 2  |-  ( ( -.  W  e.  _V  /\ 
ph )  ->  ( E `  W )  =  ( E `  A ) )
5342, 52pm2.61ian 765 1  |-  ( ph  ->  ( E `  W
)  =  ( E `
 A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   _Vcvv 2788    C_ wss 3152   (/)c0 3455   <.cop 3643   class class class wbr 4023   ` cfv 5255  (class class class)co 5858    < clt 8867   NNcn 9746   5c5 9798   6c6 9799   ndxcnx 13145   sSet csts 13146  Slot cslot 13147   Basecbs 13148   ↾s cress 13149   .rcmulr 13209  Scalarcsca 13211   .scvsca 13212   subringAlg csra 15921
This theorem is referenced by:  srabase  15931  sraaddg  15932  sramulr  15933  sratset  15936  srads  15938
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-ndx 13151  df-slot 13152  df-sets 13154  df-sca 13224  df-vsca 13225  df-sra 15925
  Copyright terms: Public domain W3C validator