MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2iun Unicode version

Theorem ss2iun 3936
Description: Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ss2iun  |-  ( A. x  e.  A  B  C_  C  ->  U_ x  e.  A  B  C_  U_ x  e.  A  C )

Proof of Theorem ss2iun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssel 3187 . . . . 5  |-  ( B 
C_  C  ->  (
y  e.  B  -> 
y  e.  C ) )
21ralimi 2631 . . . 4  |-  ( A. x  e.  A  B  C_  C  ->  A. x  e.  A  ( y  e.  B  ->  y  e.  C ) )
3 rexim 2660 . . . 4  |-  ( A. x  e.  A  (
y  e.  B  -> 
y  e.  C )  ->  ( E. x  e.  A  y  e.  B  ->  E. x  e.  A  y  e.  C )
)
42, 3syl 15 . . 3  |-  ( A. x  e.  A  B  C_  C  ->  ( E. x  e.  A  y  e.  B  ->  E. x  e.  A  y  e.  C ) )
5 eliun 3925 . . 3  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
6 eliun 3925 . . 3  |-  ( y  e.  U_ x  e.  A  C  <->  E. x  e.  A  y  e.  C )
74, 5, 63imtr4g 261 . 2  |-  ( A. x  e.  A  B  C_  C  ->  ( y  e.  U_ x  e.  A  B  ->  y  e.  U_ x  e.  A  C
) )
87ssrdv 3198 1  |-  ( A. x  e.  A  B  C_  C  ->  U_ x  e.  A  B  C_  U_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1696   A.wral 2556   E.wrex 2557    C_ wss 3165   U_ciun 3921
This theorem is referenced by:  iuneq2  3937  oawordri  6564  omwordri  6586  oewordri  6606  oeworde  6607  r1val1  7474  cfslb2n  7910  imasaddvallem  13447  dprdss  15280  tgcmp  17144  txcmplem1  17351  txcmplem2  17352  xkococnlem  17369  alexsubALT  17761  ptcmplem3  17764  metnrmlem2  18380  uniiccvol  18951  dvfval  19263  filnetlem3  26432  sstotbnd2  26601  equivtotbnd  26605  bnj1145  29339  bnj1136  29343
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-v 2803  df-in 3172  df-ss 3179  df-iun 3923
  Copyright terms: Public domain W3C validator