MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2ixp Structured version   Unicode version

Theorem ss2ixp 7067
Description: Subclass theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) (Revised by Mario Carneiro, 12-Aug-2016.)
Assertion
Ref Expression
ss2ixp  |-  ( A. x  e.  A  B  C_  C  ->  X_ x  e.  A  B  C_  X_ x  e.  A  C )

Proof of Theorem ss2ixp
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ssel 3334 . . . . 5  |-  ( B 
C_  C  ->  (
( f `  x
)  e.  B  -> 
( f `  x
)  e.  C ) )
21ral2imi 2774 . . . 4  |-  ( A. x  e.  A  B  C_  C  ->  ( A. x  e.  A  (
f `  x )  e.  B  ->  A. x  e.  A  ( f `  x )  e.  C
) )
32anim2d 549 . . 3  |-  ( A. x  e.  A  B  C_  C  ->  ( (
f  Fn  { x  |  x  e.  A }  /\  A. x  e.  A  ( f `  x )  e.  B
)  ->  ( f  Fn  { x  |  x  e.  A }  /\  A. x  e.  A  ( f `  x )  e.  C ) ) )
43ss2abdv 3408 . 2  |-  ( A. x  e.  A  B  C_  C  ->  { f  |  ( f  Fn 
{ x  |  x  e.  A }  /\  A. x  e.  A  ( f `  x )  e.  B ) } 
C_  { f  |  ( f  Fn  {
x  |  x  e.  A }  /\  A. x  e.  A  (
f `  x )  e.  C ) } )
5 df-ixp 7056 . 2  |-  X_ x  e.  A  B  =  { f  |  ( f  Fn  { x  |  x  e.  A }  /\  A. x  e.  A  ( f `  x )  e.  B
) }
6 df-ixp 7056 . 2  |-  X_ x  e.  A  C  =  { f  |  ( f  Fn  { x  |  x  e.  A }  /\  A. x  e.  A  ( f `  x )  e.  C
) }
74, 5, 63sstr4g 3381 1  |-  ( A. x  e.  A  B  C_  C  ->  X_ x  e.  A  B  C_  X_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1725   {cab 2421   A.wral 2697    C_ wss 3312    Fn wfn 5441   ` cfv 5446   X_cixp 7055
This theorem is referenced by:  ixpeq2  7068  boxcutc  7097  pwcfsdom  8450  prdsval  13670  prdshom  13681  sscpwex  14007  wunfunc  14088  wunnat  14145  dprdss  15579  psrbaglefi  16429  ptuni2  17600  ptcld  17637  ptclsg  17639  prdstopn  17652  xkopt  17679  tmdgsum2  18118  ressprdsds  18393  prdsbl  18513  prdstotbnd  26494
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-in 3319  df-ss 3326  df-ixp 7056
  Copyright terms: Public domain W3C validator