MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssab Structured version   Unicode version

Theorem ssab 3405
Description: Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
ssab  |-  ( A 
C_  { x  | 
ph }  <->  A. x
( x  e.  A  ->  ph ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem ssab
StepHypRef Expression
1 abid2 2552 . . 3  |-  { x  |  x  e.  A }  =  A
21sseq1i 3364 . 2  |-  ( { x  |  x  e.  A }  C_  { x  |  ph }  <->  A  C_  { x  |  ph } )
3 ss2ab 3403 . 2  |-  ( { x  |  x  e.  A }  C_  { x  |  ph }  <->  A. x
( x  e.  A  ->  ph ) )
42, 3bitr3i 243 1  |-  ( A 
C_  { x  | 
ph }  <->  A. x
( x  e.  A  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177   A.wal 1549    e. wcel 1725   {cab 2421    C_ wss 3312
This theorem is referenced by:  ssabral  3406  ssrab  3413  wdomd  7541  ixpiunwdom  7551  lidldvgen  16318  prdsxmslem2  18551  ballotlem2  24738
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-in 3319  df-ss 3326
  Copyright terms: Public domain W3C validator