MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssabral Unicode version

Theorem ssabral 3257
Description: The relation for a subclass of a class abstraction is equivalent to restricted quantification. (Contributed by NM, 6-Sep-2006.)
Assertion
Ref Expression
ssabral  |-  ( A 
C_  { x  | 
ph }  <->  A. x  e.  A  ph )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem ssabral
StepHypRef Expression
1 ssab 3256 . 2  |-  ( A 
C_  { x  | 
ph }  <->  A. x
( x  e.  A  ->  ph ) )
2 df-ral 2561 . 2  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
31, 2bitr4i 243 1  |-  ( A 
C_  { x  | 
ph }  <->  A. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1530    e. wcel 1696   {cab 2282   A.wral 2556    C_ wss 3165
This theorem is referenced by:  txdis1cn  17345  divstgplem  17819  xrhmeo  18460  cncmet  18760  itg1addlem4  19070  subfacp1lem6  23731  comppfsc  26410  istotbnd3  26598  sstotbnd  26602  heibor1lem  26636  heibor1  26637
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-in 3172  df-ss 3179
  Copyright terms: Public domain W3C validator