MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssabral Unicode version

Theorem ssabral 3357
Description: The relation for a subclass of a class abstraction is equivalent to restricted quantification. (Contributed by NM, 6-Sep-2006.)
Assertion
Ref Expression
ssabral  |-  ( A 
C_  { x  | 
ph }  <->  A. x  e.  A  ph )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem ssabral
StepHypRef Expression
1 ssab 3356 . 2  |-  ( A 
C_  { x  | 
ph }  <->  A. x
( x  e.  A  ->  ph ) )
2 df-ral 2654 . 2  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
31, 2bitr4i 244 1  |-  ( A 
C_  { x  | 
ph }  <->  A. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177   A.wal 1546    e. wcel 1717   {cab 2373   A.wral 2649    C_ wss 3263
This theorem is referenced by:  txdis1cn  17588  divstgplem  18071  xrhmeo  18842  cncmet  19144  itg1addlem4  19458  subfacp1lem6  24650  comppfsc  26078  istotbnd3  26171  sstotbnd  26175  heibor1lem  26209  heibor1  26210
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ral 2654  df-in 3270  df-ss 3277
  Copyright terms: Public domain W3C validator