MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssclem Unicode version

Theorem ssclem 13712
Description: Lemma for ssc1 13714 and similar theorems. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypothesis
Ref Expression
isssc.1  |-  ( ph  ->  H  Fn  ( S  X.  S ) )
Assertion
Ref Expression
ssclem  |-  ( ph  ->  ( H  e.  _V  <->  S  e.  _V ) )

Proof of Theorem ssclem
StepHypRef Expression
1 dmxpid 4914 . . 3  |-  dom  ( S  X.  S )  =  S
2 isssc.1 . . . . . . 7  |-  ( ph  ->  H  Fn  ( S  X.  S ) )
3 fndm 5359 . . . . . . 7  |-  ( H  Fn  ( S  X.  S )  ->  dom  H  =  ( S  X.  S ) )
42, 3syl 15 . . . . . 6  |-  ( ph  ->  dom  H  =  ( S  X.  S ) )
54adantr 451 . . . . 5  |-  ( (
ph  /\  H  e.  _V )  ->  dom  H  =  ( S  X.  S ) )
6 dmexg 4955 . . . . . 6  |-  ( H  e.  _V  ->  dom  H  e.  _V )
76adantl 452 . . . . 5  |-  ( (
ph  /\  H  e.  _V )  ->  dom  H  e.  _V )
85, 7eqeltrrd 2371 . . . 4  |-  ( (
ph  /\  H  e.  _V )  ->  ( S  X.  S )  e. 
_V )
9 dmexg 4955 . . . 4  |-  ( ( S  X.  S )  e.  _V  ->  dom  ( S  X.  S
)  e.  _V )
108, 9syl 15 . . 3  |-  ( (
ph  /\  H  e.  _V )  ->  dom  ( S  X.  S )  e. 
_V )
111, 10syl5eqelr 2381 . 2  |-  ( (
ph  /\  H  e.  _V )  ->  S  e. 
_V )
12 xpexg 4816 . . . 4  |-  ( ( S  e.  _V  /\  S  e.  _V )  ->  ( S  X.  S
)  e.  _V )
1312anidms 626 . . 3  |-  ( S  e.  _V  ->  ( S  X.  S )  e. 
_V )
14 fnex 5757 . . 3  |-  ( ( H  Fn  ( S  X.  S )  /\  ( S  X.  S
)  e.  _V )  ->  H  e.  _V )
152, 13, 14syl2an 463 . 2  |-  ( (
ph  /\  S  e.  _V )  ->  H  e. 
_V )
1611, 15impbida 805 1  |-  ( ph  ->  ( H  e.  _V  <->  S  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801    X. cxp 4703   dom cdm 4705    Fn wfn 5266
This theorem is referenced by:  ssc1  13714
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279
  Copyright terms: Public domain W3C validator