MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sscres Structured version   Unicode version

Theorem sscres 14015
Description: Any function restricted to a square domain is a subcategory subset of the original. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
sscres  |-  ( ( H  Fn  ( S  X.  S )  /\  S  e.  V )  ->  ( H  |`  ( T  X.  T ) ) 
C_cat  H )

Proof of Theorem sscres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3553 . . 3  |-  ( S  i^i  T )  C_  S
2 inss2 3554 . . . . . . 7  |-  ( S  i^i  T )  C_  T
3 simpl 444 . . . . . . 7  |-  ( ( x  e.  ( S  i^i  T )  /\  y  e.  ( S  i^i  T ) )  ->  x  e.  ( S  i^i  T ) )
42, 3sseldi 3338 . . . . . 6  |-  ( ( x  e.  ( S  i^i  T )  /\  y  e.  ( S  i^i  T ) )  ->  x  e.  T )
5 simpr 448 . . . . . . 7  |-  ( ( x  e.  ( S  i^i  T )  /\  y  e.  ( S  i^i  T ) )  -> 
y  e.  ( S  i^i  T ) )
62, 5sseldi 3338 . . . . . 6  |-  ( ( x  e.  ( S  i^i  T )  /\  y  e.  ( S  i^i  T ) )  -> 
y  e.  T )
74, 6ovresd 6206 . . . . 5  |-  ( ( x  e.  ( S  i^i  T )  /\  y  e.  ( S  i^i  T ) )  -> 
( x ( H  |`  ( T  X.  T
) ) y )  =  ( x H y ) )
8 eqimss 3392 . . . . 5  |-  ( ( x ( H  |`  ( T  X.  T
) ) y )  =  ( x H y )  ->  (
x ( H  |`  ( T  X.  T
) ) y ) 
C_  ( x H y ) )
97, 8syl 16 . . . 4  |-  ( ( x  e.  ( S  i^i  T )  /\  y  e.  ( S  i^i  T ) )  -> 
( x ( H  |`  ( T  X.  T
) ) y ) 
C_  ( x H y ) )
109rgen2a 2764 . . 3  |-  A. x  e.  ( S  i^i  T
) A. y  e.  ( S  i^i  T
) ( x ( H  |`  ( T  X.  T ) ) y )  C_  ( x H y )
111, 10pm3.2i 442 . 2  |-  ( ( S  i^i  T ) 
C_  S  /\  A. x  e.  ( S  i^i  T ) A. y  e.  ( S  i^i  T
) ( x ( H  |`  ( T  X.  T ) ) y )  C_  ( x H y ) )
12 simpl 444 . . . . 5  |-  ( ( H  Fn  ( S  X.  S )  /\  S  e.  V )  ->  H  Fn  ( S  X.  S ) )
13 inss1 3553 . . . . 5  |-  ( ( S  X.  S )  i^i  ( T  X.  T ) )  C_  ( S  X.  S
)
14 fnssres 5550 . . . . 5  |-  ( ( H  Fn  ( S  X.  S )  /\  ( ( S  X.  S )  i^i  ( T  X.  T ) ) 
C_  ( S  X.  S ) )  -> 
( H  |`  (
( S  X.  S
)  i^i  ( T  X.  T ) ) )  Fn  ( ( S  X.  S )  i^i  ( T  X.  T
) ) )
1512, 13, 14sylancl 644 . . . 4  |-  ( ( H  Fn  ( S  X.  S )  /\  S  e.  V )  ->  ( H  |`  (
( S  X.  S
)  i^i  ( T  X.  T ) ) )  Fn  ( ( S  X.  S )  i^i  ( T  X.  T
) ) )
16 resres 5151 . . . . . 6  |-  ( ( H  |`  ( S  X.  S ) )  |`  ( T  X.  T
) )  =  ( H  |`  ( ( S  X.  S )  i^i  ( T  X.  T
) ) )
17 fnresdm 5546 . . . . . . . 8  |-  ( H  Fn  ( S  X.  S )  ->  ( H  |`  ( S  X.  S ) )  =  H )
1817adantr 452 . . . . . . 7  |-  ( ( H  Fn  ( S  X.  S )  /\  S  e.  V )  ->  ( H  |`  ( S  X.  S ) )  =  H )
1918reseq1d 5137 . . . . . 6  |-  ( ( H  Fn  ( S  X.  S )  /\  S  e.  V )  ->  ( ( H  |`  ( S  X.  S
) )  |`  ( T  X.  T ) )  =  ( H  |`  ( T  X.  T
) ) )
2016, 19syl5eqr 2481 . . . . 5  |-  ( ( H  Fn  ( S  X.  S )  /\  S  e.  V )  ->  ( H  |`  (
( S  X.  S
)  i^i  ( T  X.  T ) ) )  =  ( H  |`  ( T  X.  T
) ) )
21 inxp 4999 . . . . . 6  |-  ( ( S  X.  S )  i^i  ( T  X.  T ) )  =  ( ( S  i^i  T )  X.  ( S  i^i  T ) )
2221a1i 11 . . . . 5  |-  ( ( H  Fn  ( S  X.  S )  /\  S  e.  V )  ->  ( ( S  X.  S )  i^i  ( T  X.  T ) )  =  ( ( S  i^i  T )  X.  ( S  i^i  T
) ) )
2320, 22fneq12d 5530 . . . 4  |-  ( ( H  Fn  ( S  X.  S )  /\  S  e.  V )  ->  ( ( H  |`  ( ( S  X.  S )  i^i  ( T  X.  T ) ) )  Fn  ( ( S  X.  S )  i^i  ( T  X.  T ) )  <->  ( H  |`  ( T  X.  T
) )  Fn  (
( S  i^i  T
)  X.  ( S  i^i  T ) ) ) )
2415, 23mpbid 202 . . 3  |-  ( ( H  Fn  ( S  X.  S )  /\  S  e.  V )  ->  ( H  |`  ( T  X.  T ) )  Fn  ( ( S  i^i  T )  X.  ( S  i^i  T
) ) )
25 simpr 448 . . 3  |-  ( ( H  Fn  ( S  X.  S )  /\  S  e.  V )  ->  S  e.  V )
2624, 12, 25isssc 14012 . 2  |-  ( ( H  Fn  ( S  X.  S )  /\  S  e.  V )  ->  ( ( H  |`  ( T  X.  T
) )  C_cat  H  <->  ( ( S  i^i  T )  C_  S  /\  A. x  e.  ( S  i^i  T
) A. y  e.  ( S  i^i  T
) ( x ( H  |`  ( T  X.  T ) ) y )  C_  ( x H y ) ) ) )
2711, 26mpbiri 225 1  |-  ( ( H  Fn  ( S  X.  S )  /\  S  e.  V )  ->  ( H  |`  ( T  X.  T ) ) 
C_cat  H )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697    i^i cin 3311    C_ wss 3312   class class class wbr 4204    X. cxp 4868    |` cres 4872    Fn wfn 5441  (class class class)co 6073    C_cat cssc 13999
This theorem is referenced by:  sscid  14016  fullsubc  14039
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-ixp 7056  df-ssc 14002
  Copyright terms: Public domain W3C validator