Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdif2d Structured version   Unicode version

Theorem ssdif2d 3488
 Description: If is contained in and is contained in , then is contained in . Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ssdifd.1
ssdif2d.2
Assertion
Ref Expression
ssdif2d

Proof of Theorem ssdif2d
StepHypRef Expression
1 ssdif2d.2 . . 3
21sscond 3486 . 2
3 ssdifd.1 . . 3
43ssdifd 3485 . 2
52, 4sstrd 3360 1
 Colors of variables: wff set class Syntax hints:   wi 4   cdif 3319   wss 3322 This theorem is referenced by:  mblfinlem3  26247  mblfinlem4  26248 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-v 2960  df-dif 3325  df-in 3329  df-ss 3336
 Copyright terms: Public domain W3C validator