Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdifeq0 Structured version   Unicode version

Theorem ssdifeq0 3710
 Description: A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015.)
Assertion
Ref Expression
ssdifeq0

Proof of Theorem ssdifeq0
StepHypRef Expression
1 inidm 3550 . . 3
2 ssdifin0 3709 . . 3
31, 2syl5eqr 2482 . 2
4 0ss 3656 . . 3
5 id 20 . . . 4
6 difeq2 3459 . . . 4
75, 6sseq12d 3377 . . 3
84, 7mpbiri 225 . 2
93, 8impbii 181 1
 Colors of variables: wff set class Syntax hints:   wb 177   wceq 1652   cdif 3317   cin 3319   wss 3320  c0 3628 This theorem is referenced by:  disjdifprg  24017  measxun2  24564  measssd  24569 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rab 2714  df-v 2958  df-dif 3323  df-in 3327  df-ss 3334  df-nul 3629
 Copyright terms: Public domain W3C validator