Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sseq12 Structured version   Unicode version

Theorem sseq12 3373
 Description: Equality theorem for the subclass relationship. (Contributed by NM, 31-May-1999.)
Assertion
Ref Expression
sseq12

Proof of Theorem sseq12
StepHypRef Expression
1 sseq1 3371 . 2
2 sseq2 3372 . 2
31, 2sylan9bb 682 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360   wceq 1653   wss 3322 This theorem is referenced by:  sseq12i  3376  funcnvuni  5520  fun11iun  5697  sorpsscmpl  6535  sornom  8159  axdc3lem2  8333  ipole  14586  ipodrsima  14593  cmetss  19269  funpsstri  25391  ismrcd2  26755  ismrc  26757 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-in 3329  df-ss 3336
 Copyright terms: Public domain W3C validator