MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sseq12i Unicode version

Theorem sseq12i 3204
Description: An equality inference for the subclass relationship. (Contributed by NM, 31-May-1999.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
sseq1i.1  |-  A  =  B
sseq12i.2  |-  C  =  D
Assertion
Ref Expression
sseq12i  |-  ( A 
C_  C  <->  B  C_  D
)

Proof of Theorem sseq12i
StepHypRef Expression
1 sseq1i.1 . 2  |-  A  =  B
2 sseq12i.2 . 2  |-  C  =  D
3 sseq12 3201 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  C_  C  <->  B 
C_  D ) )
41, 2, 3mp2an 653 1  |-  ( A 
C_  C  <->  B  C_  D
)
Colors of variables: wff set class
Syntax hints:    <-> wb 176    = wceq 1623    C_ wss 3152
This theorem is referenced by:  3sstr3i  3216  3sstr4i  3217  3sstr3g  3218  3sstr4g  3219  ss2rab  3249  pjordi  22753  mdsldmd1i  22911  ballotlem2  23047  iuninc  23158  cvmlift2lem12  23845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-in 3159  df-ss 3166
  Copyright terms: Public domain W3C validator