Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssextss Structured version   Unicode version

Theorem ssextss 4417
 Description: An extensionality-like principle defining subclass in terms of subsets. (Contributed by NM, 30-Jun-2004.)
Assertion
Ref Expression
ssextss
Distinct variable groups:   ,   ,

Proof of Theorem ssextss
StepHypRef Expression
1 sspwb 4413 . 2
2 dfss2 3337 . 2
3 vex 2959 . . . . 5
43elpw 3805 . . . 4
53elpw 3805 . . . 4
64, 5imbi12i 317 . . 3
76albii 1575 . 2
81, 2, 73bitri 263 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wal 1549   wcel 1725   wss 3320  cpw 3799 This theorem is referenced by:  ssext  4418  nssss  4419 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-pw 3801  df-sn 3820  df-pr 3821
 Copyright terms: Public domain W3C validator