MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfin2 Unicode version

Theorem ssfin2 7991
Description: A subset of a II-finite set is II-finite. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
ssfin2  |-  ( ( A  e. FinII  /\  B  C_  A
)  ->  B  e. FinII )

Proof of Theorem ssfin2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpll 730 . . . 4  |-  ( ( ( A  e. FinII  /\  B  C_  A )  /\  x  e.  ~P ~P B )  ->  A  e. FinII )
2 elpwi 3667 . . . . . 6  |-  ( x  e.  ~P ~P B  ->  x  C_  ~P B
)
32adantl 452 . . . . 5  |-  ( ( ( A  e. FinII  /\  B  C_  A )  /\  x  e.  ~P ~P B )  ->  x  C_  ~P B )
4 simplr 731 . . . . . 6  |-  ( ( ( A  e. FinII  /\  B  C_  A )  /\  x  e.  ~P ~P B )  ->  B  C_  A
)
5 sspwb 4260 . . . . . 6  |-  ( B 
C_  A  <->  ~P B  C_ 
~P A )
64, 5sylib 188 . . . . 5  |-  ( ( ( A  e. FinII  /\  B  C_  A )  /\  x  e.  ~P ~P B )  ->  ~P B  C_  ~P A )
73, 6sstrd 3223 . . . 4  |-  ( ( ( A  e. FinII  /\  B  C_  A )  /\  x  e.  ~P ~P B )  ->  x  C_  ~P A )
8 fin2i 7966 . . . . 5  |-  ( ( ( A  e. FinII  /\  x  C_ 
~P A )  /\  ( x  =/=  (/)  /\ [ C.]  Or  x ) )  ->  U. x  e.  x
)
98ex 423 . . . 4  |-  ( ( A  e. FinII  /\  x  C_  ~P A )  ->  (
( x  =/=  (/)  /\ [ C.]  Or  x )  ->  U. x  e.  x ) )
101, 7, 9syl2anc 642 . . 3  |-  ( ( ( A  e. FinII  /\  B  C_  A )  /\  x  e.  ~P ~P B )  ->  ( ( x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  x ) )
1110ralrimiva 2660 . 2  |-  ( ( A  e. FinII  /\  B  C_  A
)  ->  A. x  e.  ~P  ~P B ( ( x  =/=  (/)  /\ [ C.]  Or  x )  ->  U. x  e.  x ) )
12 ssexg 4197 . . . 4  |-  ( ( B  C_  A  /\  A  e. FinII )  ->  B  e.  _V )
1312ancoms 439 . . 3  |-  ( ( A  e. FinII  /\  B  C_  A
)  ->  B  e.  _V )
14 isfin2 7965 . . 3  |-  ( B  e.  _V  ->  ( B  e. FinII 
<-> 
A. x  e.  ~P  ~P B ( ( x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  x ) ) )
1513, 14syl 15 . 2  |-  ( ( A  e. FinII  /\  B  C_  A
)  ->  ( B  e. FinII  <->  A. x  e.  ~P  ~P B ( ( x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  x ) ) )
1611, 15mpbird 223 1  |-  ( ( A  e. FinII  /\  B  C_  A
)  ->  B  e. FinII )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1701    =/= wne 2479   A.wral 2577   _Vcvv 2822    C_ wss 3186   (/)c0 3489   ~Pcpw 3659   U.cuni 3864    Or wor 4350   [ C.] crpss 6318  FinIIcfin2 7950
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-v 2824  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-pw 3661  df-sn 3680  df-pr 3681  df-uni 3865  df-po 4351  df-so 4352  df-fin2 7957
  Copyright terms: Public domain W3C validator