MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfin4 Unicode version

Theorem ssfin4 8123
Description: Dedekind finite sets have Dedekind finite subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ssfin4  |-  ( ( A  e. FinIV  /\  B  C_  A
)  ->  B  e. FinIV )

Proof of Theorem ssfin4
Dummy variables  c  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 731 . . . 4  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  A  e. FinIV )
2 pssss 3385 . . . . . . . . 9  |-  ( x 
C.  B  ->  x  C_  B )
3 simpr 448 . . . . . . . . 9  |-  ( ( A  e. FinIV  /\  B  C_  A
)  ->  B  C_  A
)
42, 3sylan9ssr 3305 . . . . . . . 8  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  ->  x  C_  A )
5 difssd 3418 . . . . . . . 8  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  ->  ( A  \  B )  C_  A )
64, 5unssd 3466 . . . . . . 7  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  ->  (
x  u.  ( A 
\  B ) ) 
C_  A )
7 pssnel 3636 . . . . . . . . 9  |-  ( x 
C.  B  ->  E. c
( c  e.  B  /\  -.  c  e.  x
) )
87adantl 453 . . . . . . . 8  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  ->  E. c
( c  e.  B  /\  -.  c  e.  x
) )
9 simpllr 736 . . . . . . . . . . 11  |-  ( ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  /\  ( c  e.  B  /\  -.  c  e.  x ) )  ->  B  C_  A )
10 simprl 733 . . . . . . . . . . 11  |-  ( ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  /\  ( c  e.  B  /\  -.  c  e.  x ) )  -> 
c  e.  B )
119, 10sseldd 3292 . . . . . . . . . 10  |-  ( ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  /\  ( c  e.  B  /\  -.  c  e.  x ) )  -> 
c  e.  A )
12 simprr 734 . . . . . . . . . . 11  |-  ( ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  /\  ( c  e.  B  /\  -.  c  e.  x ) )  ->  -.  c  e.  x
)
13 elndif 3414 . . . . . . . . . . . 12  |-  ( c  e.  B  ->  -.  c  e.  ( A  \  B ) )
1413ad2antrl 709 . . . . . . . . . . 11  |-  ( ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  /\  ( c  e.  B  /\  -.  c  e.  x ) )  ->  -.  c  e.  ( A  \  B ) )
15 ioran 477 . . . . . . . . . . . 12  |-  ( -.  ( c  e.  x  \/  c  e.  ( A  \  B ) )  <-> 
( -.  c  e.  x  /\  -.  c  e.  ( A  \  B
) ) )
16 elun 3431 . . . . . . . . . . . 12  |-  ( c  e.  ( x  u.  ( A  \  B
) )  <->  ( c  e.  x  \/  c  e.  ( A  \  B
) ) )
1715, 16xchnxbir 301 . . . . . . . . . . 11  |-  ( -.  c  e.  ( x  u.  ( A  \  B ) )  <->  ( -.  c  e.  x  /\  -.  c  e.  ( A  \  B ) ) )
1812, 14, 17sylanbrc 646 . . . . . . . . . 10  |-  ( ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  /\  ( c  e.  B  /\  -.  c  e.  x ) )  ->  -.  c  e.  (
x  u.  ( A 
\  B ) ) )
19 nelneq2 2486 . . . . . . . . . 10  |-  ( ( c  e.  A  /\  -.  c  e.  (
x  u.  ( A 
\  B ) ) )  ->  -.  A  =  ( x  u.  ( A  \  B
) ) )
2011, 18, 19syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  /\  ( c  e.  B  /\  -.  c  e.  x ) )  ->  -.  A  =  (
x  u.  ( A 
\  B ) ) )
21 eqcom 2389 . . . . . . . . 9  |-  ( A  =  ( x  u.  ( A  \  B
) )  <->  ( x  u.  ( A  \  B
) )  =  A )
2220, 21sylnib 296 . . . . . . . 8  |-  ( ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  /\  ( c  e.  B  /\  -.  c  e.  x ) )  ->  -.  ( x  u.  ( A  \  B ) )  =  A )
238, 22exlimddv 1645 . . . . . . 7  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  ->  -.  ( x  u.  ( A  \  B ) )  =  A )
24 dfpss2 3375 . . . . . . 7  |-  ( ( x  u.  ( A 
\  B ) ) 
C.  A  <->  ( (
x  u.  ( A 
\  B ) ) 
C_  A  /\  -.  ( x  u.  ( A  \  B ) )  =  A ) )
256, 23, 24sylanbrc 646 . . . . . 6  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  x  C.  B )  ->  (
x  u.  ( A 
\  B ) ) 
C.  A )
2625adantrr 698 . . . . 5  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  ( x  u.  ( A  \  B
) )  C.  A
)
27 simprr 734 . . . . . . 7  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  x  ~~  B
)
28 difexg 4292 . . . . . . . 8  |-  ( A  e. FinIV  ->  ( A  \  B )  e.  _V )
29 enrefg 7075 . . . . . . . 8  |-  ( ( A  \  B )  e.  _V  ->  ( A  \  B )  ~~  ( A  \  B ) )
301, 28, 293syl 19 . . . . . . 7  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  ( A  \  B )  ~~  ( A  \  B ) )
312ad2antrl 709 . . . . . . . . . 10  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  x  C_  B
)
32 ssinss1 3512 . . . . . . . . . 10  |-  ( x 
C_  B  ->  (
x  i^i  A )  C_  B )
3331, 32syl 16 . . . . . . . . 9  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  ( x  i^i 
A )  C_  B
)
34 inssdif0 3638 . . . . . . . . 9  |-  ( ( x  i^i  A ) 
C_  B  <->  ( x  i^i  ( A  \  B
) )  =  (/) )
3533, 34sylib 189 . . . . . . . 8  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  ( x  i^i  ( A  \  B
) )  =  (/) )
36 disjdif 3643 . . . . . . . 8  |-  ( B  i^i  ( A  \  B ) )  =  (/)
3735, 36jctir 525 . . . . . . 7  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  ( ( x  i^i  ( A  \  B ) )  =  (/)  /\  ( B  i^i  ( A  \  B ) )  =  (/) ) )
38 unen 7125 . . . . . . 7  |-  ( ( ( x  ~~  B  /\  ( A  \  B
)  ~~  ( A  \  B ) )  /\  ( ( x  i^i  ( A  \  B
) )  =  (/)  /\  ( B  i^i  ( A  \  B ) )  =  (/) ) )  -> 
( x  u.  ( A  \  B ) ) 
~~  ( B  u.  ( A  \  B ) ) )
3927, 30, 37, 38syl21anc 1183 . . . . . 6  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  ( x  u.  ( A  \  B
) )  ~~  ( B  u.  ( A  \  B ) ) )
40 simplr 732 . . . . . . 7  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  B  C_  A
)
41 undif 3651 . . . . . . 7  |-  ( B 
C_  A  <->  ( B  u.  ( A  \  B
) )  =  A )
4240, 41sylib 189 . . . . . 6  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  ( B  u.  ( A  \  B ) )  =  A )
4339, 42breqtrd 4177 . . . . 5  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  ( x  u.  ( A  \  B
) )  ~~  A
)
44 fin4i 8111 . . . . 5  |-  ( ( ( x  u.  ( A  \  B ) ) 
C.  A  /\  (
x  u.  ( A 
\  B ) ) 
~~  A )  ->  -.  A  e. FinIV )
4526, 43, 44syl2anc 643 . . . 4  |-  ( ( ( A  e. FinIV  /\  B  C_  A )  /\  (
x  C.  B  /\  x  ~~  B ) )  ->  -.  A  e. FinIV )
461, 45pm2.65da 560 . . 3  |-  ( ( A  e. FinIV  /\  B  C_  A
)  ->  -.  (
x  C.  B  /\  x  ~~  B ) )
4746nexdv 1930 . 2  |-  ( ( A  e. FinIV  /\  B  C_  A
)  ->  -.  E. x
( x  C.  B  /\  x  ~~  B ) )
48 ssexg 4290 . . . 4  |-  ( ( B  C_  A  /\  A  e. FinIV )  ->  B  e.  _V )
4948ancoms 440 . . 3  |-  ( ( A  e. FinIV  /\  B  C_  A
)  ->  B  e.  _V )
50 isfin4 8110 . . 3  |-  ( B  e.  _V  ->  ( B  e. FinIV 
<->  -.  E. x ( x  C.  B  /\  x  ~~  B ) ) )
5149, 50syl 16 . 2  |-  ( ( A  e. FinIV  /\  B  C_  A
)  ->  ( B  e. FinIV  <->  -. 
E. x ( x 
C.  B  /\  x  ~~  B ) ) )
5247, 51mpbird 224 1  |-  ( ( A  e. FinIV  /\  B  C_  A
)  ->  B  e. FinIV )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717   _Vcvv 2899    \ cdif 3260    u. cun 3261    i^i cin 3262    C_ wss 3263    C. wpss 3264   (/)c0 3571   class class class wbr 4153    ~~ cen 7042  FinIVcfin4 8093
This theorem is referenced by:  domfin4  8124
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-en 7046  df-fin4 8100
  Copyright terms: Public domain W3C validator