HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sshjval Unicode version

Theorem sshjval 21929
Description: Value of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
sshjval  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( A  vH  B )  =  ( _|_ `  ( _|_ `  ( A  u.  B ) ) ) )

Proof of Theorem sshjval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hilex 21579 . . 3  |-  ~H  e.  _V
21elpw2 4175 . 2  |-  ( A  e.  ~P ~H  <->  A  C_  ~H )
31elpw2 4175 . 2  |-  ( B  e.  ~P ~H  <->  B  C_  ~H )
4 uneq12 3324 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  u.  y
)  =  ( A  u.  B ) )
54fveq2d 5529 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( _|_ `  (
x  u.  y ) )  =  ( _|_ `  ( A  u.  B
) ) )
65fveq2d 5529 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( _|_ `  ( _|_ `  ( x  u.  y ) ) )  =  ( _|_ `  ( _|_ `  ( A  u.  B ) ) ) )
7 df-chj 21889 . . 3  |-  vH  =  ( x  e.  ~P ~H ,  y  e.  ~P ~H  |->  ( _|_ `  ( _|_ `  ( x  u.  y ) ) ) )
8 fvex 5539 . . 3  |-  ( _|_ `  ( _|_ `  ( A  u.  B )
) )  e.  _V
96, 7, 8ovmpt2a 5978 . 2  |-  ( ( A  e.  ~P ~H  /\  B  e.  ~P ~H )  ->  ( A  vH  B )  =  ( _|_ `  ( _|_ `  ( A  u.  B
) ) ) )
102, 3, 9syl2anbr 466 1  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( A  vH  B )  =  ( _|_ `  ( _|_ `  ( A  u.  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    u. cun 3150    C_ wss 3152   ~Pcpw 3625   ` cfv 5255  (class class class)co 5858   ~Hchil 21499   _|_cort 21510    vH chj 21513
This theorem is referenced by:  shjval  21930  sshjval3  21933  sshjcl  21934  sshjval2  21990  ssjo  22026  sshhococi  22125
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-hilex 21579
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-chj 21889
  Copyright terms: Public domain W3C validator