HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sshjval Unicode version

Theorem sshjval 22805
Description: Value of join for subsets of Hilbert space. (Contributed by NM, 1-Nov-2000.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
sshjval  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( A  vH  B )  =  ( _|_ `  ( _|_ `  ( A  u.  B ) ) ) )

Proof of Theorem sshjval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hilex 22455 . . 3  |-  ~H  e.  _V
21elpw2 4324 . 2  |-  ( A  e.  ~P ~H  <->  A  C_  ~H )
31elpw2 4324 . 2  |-  ( B  e.  ~P ~H  <->  B  C_  ~H )
4 uneq12 3456 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( x  u.  y
)  =  ( A  u.  B ) )
54fveq2d 5691 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( _|_ `  (
x  u.  y ) )  =  ( _|_ `  ( A  u.  B
) ) )
65fveq2d 5691 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( _|_ `  ( _|_ `  ( x  u.  y ) ) )  =  ( _|_ `  ( _|_ `  ( A  u.  B ) ) ) )
7 df-chj 22765 . . 3  |-  vH  =  ( x  e.  ~P ~H ,  y  e.  ~P ~H  |->  ( _|_ `  ( _|_ `  ( x  u.  y ) ) ) )
8 fvex 5701 . . 3  |-  ( _|_ `  ( _|_ `  ( A  u.  B )
) )  e.  _V
96, 7, 8ovmpt2a 6163 . 2  |-  ( ( A  e.  ~P ~H  /\  B  e.  ~P ~H )  ->  ( A  vH  B )  =  ( _|_ `  ( _|_ `  ( A  u.  B
) ) ) )
102, 3, 9syl2anbr 467 1  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( A  vH  B )  =  ( _|_ `  ( _|_ `  ( A  u.  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    u. cun 3278    C_ wss 3280   ~Pcpw 3759   ` cfv 5413  (class class class)co 6040   ~Hchil 22375   _|_cort 22386    vH chj 22389
This theorem is referenced by:  shjval  22806  sshjval3  22809  sshjcl  22810  sshjval2  22866  ssjo  22902  sshhococi  23001
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363  ax-hilex 22455
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5377  df-fun 5415  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-chj 22765
  Copyright terms: Public domain W3C validator