HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  sshjval3 Unicode version

Theorem sshjval3 21949
Description: Value of join for subsets of Hilbert space in terms of supremum: the join is the supremum of its two arguments. Based on the definition of join in [Beran] p. 3. For later convenience we prove a general version that works for any subset of Hilbert space, not just the elements of the lattice  CH. (Contributed by NM, 2-Mar-2004.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
sshjval3  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( A  vH  B )  =  (  \/H  `  { A ,  B } ) )

Proof of Theorem sshjval3
StepHypRef Expression
1 ax-hilex 21595 . . . . . 6  |-  ~H  e.  _V
21elpw2 4191 . . . . 5  |-  ( A  e.  ~P ~H  <->  A  C_  ~H )
31elpw2 4191 . . . . 5  |-  ( B  e.  ~P ~H  <->  B  C_  ~H )
4 uniprg 3858 . . . . 5  |-  ( ( A  e.  ~P ~H  /\  B  e.  ~P ~H )  ->  U. { A ,  B }  =  ( A  u.  B )
)
52, 3, 4syl2anbr 466 . . . 4  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  U. { A ,  B }  =  ( A  u.  B ) )
65fveq2d 5545 . . 3  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( _|_ `  U. { A ,  B } )  =  ( _|_ `  ( A  u.  B )
) )
76fveq2d 5545 . 2  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( _|_ `  ( _|_ `  U. { A ,  B }
) )  =  ( _|_ `  ( _|_ `  ( A  u.  B
) ) ) )
8 prssi 3787 . . . 4  |-  ( ( A  e.  ~P ~H  /\  B  e.  ~P ~H )  ->  { A ,  B }  C_  ~P ~H )
92, 3, 8syl2anbr 466 . . 3  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  { A ,  B }  C_  ~P ~H )
10 hsupval 21929 . . 3  |-  ( { A ,  B }  C_ 
~P ~H  ->  (  \/H  `  { A ,  B } )  =  ( _|_ `  ( _|_ `  U. { A ,  B } ) ) )
119, 10syl 15 . 2  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  (  \/H  `  { A ,  B } )  =  ( _|_ `  ( _|_ `  U. { A ,  B } ) ) )
12 sshjval 21945 . 2  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( A  vH  B )  =  ( _|_ `  ( _|_ `  ( A  u.  B ) ) ) )
137, 11, 123eqtr4rd 2339 1  |-  ( ( A  C_  ~H  /\  B  C_ 
~H )  ->  ( A  vH  B )  =  (  \/H  `  { A ,  B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    u. cun 3163    C_ wss 3165   ~Pcpw 3638   {cpr 3654   U.cuni 3843   ` cfv 5271  (class class class)co 5874   ~Hchil 21515   _|_cort 21526    vH chj 21529    \/H chsup 21530
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-hilex 21595
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-chj 21905  df-chsup 21906
  Copyright terms: Public domain W3C validator