Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssintab Structured version   Unicode version

Theorem ssintab 4069
 Description: Subclass of the intersection of a class abstraction. (Contributed by NM, 31-Jul-2006.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
ssintab
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem ssintab
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ssint 4068 . 2
2 sseq2 3372 . . 3
32ralab2 3101 . 2
41, 3bitri 242 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178  wal 1550  cab 2424  wral 2707   wss 3322  cint 4052 This theorem is referenced by:  ssmin  4071  ssintrab  4075  intmin4  4081  dffi2  7431  rankval3b  7755  sstskm  8722  dfuzi  10365  cycsubg  14973 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-v 2960  df-in 3329  df-ss 3336  df-int 4053
 Copyright terms: Public domain W3C validator