Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssintrab Structured version   Unicode version

Theorem ssintrab 4065
 Description: Subclass of the intersection of a restricted class builder. (Contributed by NM, 30-Jan-2015.)
Assertion
Ref Expression
ssintrab
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem ssintrab
StepHypRef Expression
1 df-rab 2706 . . . 4
21inteqi 4046 . . 3
32sseq2i 3365 . 2
4 impexp 434 . . . 4
54albii 1575 . . 3
6 ssintab 4059 . . 3
7 df-ral 2702 . . 3
85, 6, 73bitr4i 269 . 2
93, 8bitri 241 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359  wal 1549   wcel 1725  cab 2421  wral 2697  crab 2701   wss 3312  cint 4042 This theorem is referenced by:  knatar  6072  harval2  7876  pwfseqlem3  8527  topjoin  26385 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rab 2706  df-v 2950  df-in 3319  df-ss 3326  df-int 4043
 Copyright terms: Public domain W3C validator