MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssintrab Unicode version

Theorem ssintrab 3885
Description: Subclass of the intersection of a restricted class builder. (Contributed by NM, 30-Jan-2015.)
Assertion
Ref Expression
ssintrab  |-  ( A 
C_  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  A  C_  x
) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem ssintrab
StepHypRef Expression
1 df-rab 2552 . . . 4  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
21inteqi 3866 . . 3  |-  |^| { x  e.  B  |  ph }  =  |^| { x  |  ( x  e.  B  /\  ph ) }
32sseq2i 3203 . 2  |-  ( A 
C_  |^| { x  e.  B  |  ph }  <->  A 
C_  |^| { x  |  ( x  e.  B  /\  ph ) } )
4 impexp 433 . . . 4  |-  ( ( ( x  e.  B  /\  ph )  ->  A  C_  x )  <->  ( x  e.  B  ->  ( ph  ->  A  C_  x )
) )
54albii 1553 . . 3  |-  ( A. x ( ( x  e.  B  /\  ph )  ->  A  C_  x
)  <->  A. x ( x  e.  B  ->  ( ph  ->  A  C_  x
) ) )
6 ssintab 3879 . . 3  |-  ( A 
C_  |^| { x  |  ( x  e.  B  /\  ph ) }  <->  A. x
( ( x  e.  B  /\  ph )  ->  A  C_  x )
)
7 df-ral 2548 . . 3  |-  ( A. x  e.  B  ( ph  ->  A  C_  x
)  <->  A. x ( x  e.  B  ->  ( ph  ->  A  C_  x
) ) )
85, 6, 73bitr4i 268 . 2  |-  ( A 
C_  |^| { x  |  ( x  e.  B  /\  ph ) }  <->  A. x  e.  B  ( ph  ->  A  C_  x )
)
93, 8bitri 240 1  |-  ( A 
C_  |^| { x  e.  B  |  ph }  <->  A. x  e.  B  (
ph  ->  A  C_  x
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527    e. wcel 1684   {cab 2269   A.wral 2543   {crab 2547    C_ wss 3152   |^|cint 3862
This theorem is referenced by:  knatar  5857  harval2  7630  pwfseqlem3  8282  wuncid  8365  topjoin  26314
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rab 2552  df-v 2790  df-in 3159  df-ss 3166  df-int 3863
  Copyright terms: Public domain W3C validator