MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssintub Unicode version

Theorem ssintub 3880
Description: Subclass of a least upper bound. (Contributed by NM, 8-Aug-2000.)
Assertion
Ref Expression
ssintub  |-  A  C_  |^|
{ x  e.  B  |  A  C_  x }
Distinct variable groups:    x, A    x, B

Proof of Theorem ssintub
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssint 3878 . 2  |-  ( A 
C_  |^| { x  e.  B  |  A  C_  x }  <->  A. y  e.  {
x  e.  B  |  A  C_  x } A  C_  y )
2 sseq2 3200 . . . 4  |-  ( x  =  y  ->  ( A  C_  x  <->  A  C_  y
) )
32elrab 2923 . . 3  |-  ( y  e.  { x  e.  B  |  A  C_  x }  <->  ( y  e.  B  /\  A  C_  y ) )
43simprbi 450 . 2  |-  ( y  e.  { x  e.  B  |  A  C_  x }  ->  A  C_  y )
51, 4mprgbir 2613 1  |-  A  C_  |^|
{ x  e.  B  |  A  C_  x }
Colors of variables: wff set class
Syntax hints:    e. wcel 1684   {crab 2547    C_ wss 3152   |^|cint 3862
This theorem is referenced by:  intmin  3882  mrcssid  13519  lspssid  15742  lbsextlem3  15913  aspssid  16073  sscls  16793  filufint  17615  spanss2  21924  shsval2i  21966  ococin  21987  chsupsn  21992  igenss  26099  rgspnssid  26787  pclssidN  29457  dochocss  30929
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rab 2552  df-v 2790  df-in 3159  df-ss 3166  df-int 3863
  Copyright terms: Public domain W3C validator