Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssmin Structured version   Unicode version

Theorem ssmin 4071
 Description: Subclass of the minimum value of class of supersets. (Contributed by NM, 10-Aug-2006.)
Assertion
Ref Expression
ssmin
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem ssmin
StepHypRef Expression
1 ssintab 4069 . 2
2 simpl 445 . 2
31, 2mpgbir 1560 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360  cab 2424   wss 3322  cint 4052 This theorem is referenced by:  tcid  7681 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-v 2960  df-in 3329  df-ss 3336  df-int 4053
 Copyright terms: Public domain W3C validator