MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnlim Structured version   Unicode version

Theorem ssnlim 4892
Description: An ordinal subclass of non-limit ordinals is a class of natural numbers. Exercise 7 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.)
Assertion
Ref Expression
ssnlim  |-  ( ( Ord  A  /\  A  C_ 
{ x  e.  On  |  -.  Lim  x }
)  ->  A  C_  om )
Distinct variable group:    x, A

Proof of Theorem ssnlim
StepHypRef Expression
1 limom 4889 . . . 4  |-  Lim  om
2 ssel 3328 . . . . 5  |-  ( A 
C_  { x  e.  On  |  -.  Lim  x }  ->  ( om  e.  A  ->  om  e.  { x  e.  On  |  -.  Lim  x } ) )
3 limeq 4622 . . . . . . . 8  |-  ( x  =  om  ->  ( Lim  x  <->  Lim  om ) )
43notbid 287 . . . . . . 7  |-  ( x  =  om  ->  ( -.  Lim  x  <->  -.  Lim  om ) )
54elrab 3098 . . . . . 6  |-  ( om  e.  { x  e.  On  |  -.  Lim  x }  <->  ( om  e.  On  /\  -.  Lim  om ) )
65simprbi 452 . . . . 5  |-  ( om  e.  { x  e.  On  |  -.  Lim  x }  ->  -.  Lim  om )
72, 6syl6 32 . . . 4  |-  ( A 
C_  { x  e.  On  |  -.  Lim  x }  ->  ( om  e.  A  ->  -.  Lim  om ) )
81, 7mt2i 113 . . 3  |-  ( A 
C_  { x  e.  On  |  -.  Lim  x }  ->  -.  om  e.  A )
98adantl 454 . 2  |-  ( ( Ord  A  /\  A  C_ 
{ x  e.  On  |  -.  Lim  x }
)  ->  -.  om  e.  A )
10 ordom 4883 . . . 4  |-  Ord  om
11 ordtri1 4643 . . . 4  |-  ( ( Ord  A  /\  Ord  om )  ->  ( A  C_ 
om 
<->  -.  om  e.  A
) )
1210, 11mpan2 654 . . 3  |-  ( Ord 
A  ->  ( A  C_ 
om 
<->  -.  om  e.  A
) )
1312adantr 453 . 2  |-  ( ( Ord  A  /\  A  C_ 
{ x  e.  On  |  -.  Lim  x }
)  ->  ( A  C_ 
om 
<->  -.  om  e.  A
) )
149, 13mpbird 225 1  |-  ( ( Ord  A  /\  A  C_ 
{ x  e.  On  |  -.  Lim  x }
)  ->  A  C_  om )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1727   {crab 2715    C_ wss 3306   Ord word 4609   Oncon0 4610   Lim wlim 4611   omcom 4874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-br 4238  df-opab 4292  df-tr 4328  df-eprel 4523  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875
  Copyright terms: Public domain W3C validator