MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssntr Unicode version

Theorem ssntr 16795
Description: An open subset of a set is a subset of the set's interior. (Contributed by Jeff Hankins, 31-Aug-2009.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
ssntr  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( O  e.  J  /\  O  C_  S ) )  ->  O  C_  (
( int `  J
) `  S )
)

Proof of Theorem ssntr
StepHypRef Expression
1 elin 3358 . . . . 5  |-  ( O  e.  ( J  i^i  ~P S )  <->  ( O  e.  J  /\  O  e. 
~P S ) )
2 elpwg 3632 . . . . . 6  |-  ( O  e.  J  ->  ( O  e.  ~P S  <->  O 
C_  S ) )
32pm5.32i 618 . . . . 5  |-  ( ( O  e.  J  /\  O  e.  ~P S
)  <->  ( O  e.  J  /\  O  C_  S ) )
41, 3bitr2i 241 . . . 4  |-  ( ( O  e.  J  /\  O  C_  S )  <->  O  e.  ( J  i^i  ~P S
) )
5 elssuni 3855 . . . 4  |-  ( O  e.  ( J  i^i  ~P S )  ->  O  C_ 
U. ( J  i^i  ~P S ) )
64, 5sylbi 187 . . 3  |-  ( ( O  e.  J  /\  O  C_  S )  ->  O  C_  U. ( J  i^i  ~P S ) )
76adantl 452 . 2  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( O  e.  J  /\  O  C_  S ) )  ->  O  C_  U. ( J  i^i  ~P S ) )
8 clscld.1 . . . 4  |-  X  = 
U. J
98ntrval 16773 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  U. ( J  i^i  ~P S ) )
109adantr 451 . 2  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( O  e.  J  /\  O  C_  S ) )  ->  ( ( int `  J ) `  S )  =  U. ( J  i^i  ~P S
) )
117, 10sseqtr4d 3215 1  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( O  e.  J  /\  O  C_  S ) )  ->  O  C_  (
( int `  J
) `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   U.cuni 3827   ` cfv 5255   Topctop 16631   intcnt 16754
This theorem is referenced by:  ntrin  16798  neiint  16841  restntr  16912  cnntri  17000  xkococnlem  17353  iccntr  18326  bcthlem5  18750  ftc1  19389  cvmlift2lem12  23845  cvmlift3lem7  23856  opnregcld  26248
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-top 16636  df-ntr 16757
  Copyright terms: Public domain W3C validator