MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssopab2b Unicode version

Theorem ssopab2b 4307
Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
ssopab2b  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } 
<-> 
A. x A. y
( ph  ->  ps )
)

Proof of Theorem ssopab2b
StepHypRef Expression
1 nfopab1 4101 . . . 4  |-  F/_ x { <. x ,  y
>.  |  ph }
2 nfopab1 4101 . . . 4  |-  F/_ x { <. x ,  y
>.  |  ps }
31, 2nfss 3186 . . 3  |-  F/ x { <. x ,  y
>.  |  ph }  C_  {
<. x ,  y >.  |  ps }
4 nfopab2 4102 . . . . 5  |-  F/_ y { <. x ,  y
>.  |  ph }
5 nfopab2 4102 . . . . 5  |-  F/_ y { <. x ,  y
>.  |  ps }
64, 5nfss 3186 . . . 4  |-  F/ y { <. x ,  y
>.  |  ph }  C_  {
<. x ,  y >.  |  ps }
7 ssel 3187 . . . . 5  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  ->  ( <. x ,  y >.  e.  { <. x ,  y >.  |  ph }  ->  <. x ,  y >.  e.  { <. x ,  y >.  |  ps } ) )
8 opabid 4287 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ph }  <->  ph )
9 opabid 4287 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ps }  <->  ps )
107, 8, 93imtr3g 260 . . . 4  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  ->  ( ph  ->  ps ) )
116, 10alrimi 1757 . . 3  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  ->  A. y ( ph  ->  ps ) )
123, 11alrimi 1757 . 2  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  ->  A. x A. y
( ph  ->  ps )
)
13 ssopab2 4306 . 2  |-  ( A. x A. y ( ph  ->  ps )  ->  { <. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } )
1412, 13impbii 180 1  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } 
<-> 
A. x A. y
( ph  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1530    e. wcel 1696    C_ wss 3165   <.cop 3656   {copab 4092
This theorem is referenced by:  eqopab2b  4310  dffun2  5281  marypha2lem3  7206  cvmlift2lem12  23860
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-opab 4094
  Copyright terms: Public domain W3C validator