Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssopab2dv Structured version   Unicode version

Theorem ssopab2dv 4486
 Description: Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypothesis
Ref Expression
ssopab2dv.1
Assertion
Ref Expression
ssopab2dv
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem ssopab2dv
StepHypRef Expression
1 ssopab2dv.1 . . 3
21alrimivv 1643 . 2
3 ssopab2 4483 . 2
42, 3syl 16 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1550   wss 3322  copab 4268 This theorem is referenced by:  xpss12  4984  coss1  5031  coss2  5032  cnvss  5048  aceq3lem  8006  shftfval  11890  sslm  17368  ulmval  20301  iseupa  21692  dicssdvh  32058 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-in 3329  df-ss 3336  df-opab 4270
 Copyright terms: Public domain W3C validator