MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspgval Structured version   Unicode version

Theorem sspgval 22220
Description: Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspg.y  |-  Y  =  ( BaseSet `  W )
sspg.g  |-  G  =  ( +v `  U
)
sspg.f  |-  F  =  ( +v `  W
)
sspg.h  |-  H  =  ( SubSp `  U )
Assertion
Ref Expression
sspgval  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( A  e.  Y  /\  B  e.  Y
) )  ->  ( A F B )  =  ( A G B ) )

Proof of Theorem sspgval
StepHypRef Expression
1 sspg.y . . . 4  |-  Y  =  ( BaseSet `  W )
2 sspg.g . . . 4  |-  G  =  ( +v `  U
)
3 sspg.f . . . 4  |-  F  =  ( +v `  W
)
4 sspg.h . . . 4  |-  H  =  ( SubSp `  U )
51, 2, 3, 4sspg 22219 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  F  =  ( G  |`  ( Y  X.  Y
) ) )
65oveqd 6090 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( A F B )  =  ( A ( G  |`  ( Y  X.  Y
) ) B ) )
7 ovres 6205 . 2  |-  ( ( A  e.  Y  /\  B  e.  Y )  ->  ( A ( G  |`  ( Y  X.  Y
) ) B )  =  ( A G B ) )
86, 7sylan9eq 2487 1  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( A  e.  Y  /\  B  e.  Y
) )  ->  ( A F B )  =  ( A G B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    X. cxp 4868    |` cres 4872   ` cfv 5446  (class class class)co 6073   NrmCVeccnv 22055   +vcpv 22056   BaseSetcba 22057   SubSpcss 22212
This theorem is referenced by:  sspmval  22224  sspival  22229  sspph  22348  minvecolem2  22369  hhshsslem2  22760
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-1st 6341  df-2nd 6342  df-grpo 21771  df-ablo 21862  df-vc 22017  df-nv 22063  df-va 22066  df-ba 22067  df-sm 22068  df-0v 22069  df-nmcv 22071  df-ssp 22213
  Copyright terms: Public domain W3C validator