MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspgval Unicode version

Theorem sspgval 21321
Description: Vector addition on a subspace in terms of vector addition on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspg.y  |-  Y  =  ( BaseSet `  W )
sspg.g  |-  G  =  ( +v `  U
)
sspg.f  |-  F  =  ( +v `  W
)
sspg.h  |-  H  =  ( SubSp `  U )
Assertion
Ref Expression
sspgval  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( A  e.  Y  /\  B  e.  Y
) )  ->  ( A F B )  =  ( A G B ) )

Proof of Theorem sspgval
StepHypRef Expression
1 sspg.y . . . 4  |-  Y  =  ( BaseSet `  W )
2 sspg.g . . . 4  |-  G  =  ( +v `  U
)
3 sspg.f . . . 4  |-  F  =  ( +v `  W
)
4 sspg.h . . . 4  |-  H  =  ( SubSp `  U )
51, 2, 3, 4sspg 21320 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  F  =  ( G  |`  ( Y  X.  Y
) ) )
65oveqd 5891 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( A F B )  =  ( A ( G  |`  ( Y  X.  Y
) ) B ) )
7 ovres 6003 . 2  |-  ( ( A  e.  Y  /\  B  e.  Y )  ->  ( A ( G  |`  ( Y  X.  Y
) ) B )  =  ( A G B ) )
86, 7sylan9eq 2348 1  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  ( A  e.  Y  /\  B  e.  Y
) )  ->  ( A F B )  =  ( A G B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    X. cxp 4703    |` cres 4707   ` cfv 5271  (class class class)co 5874   NrmCVeccnv 21156   +vcpv 21157   BaseSetcba 21158   SubSpcss 21313
This theorem is referenced by:  sspmval  21325  sspival  21330  sspph  21449  minvecolem2  21470  hhshsslem2  21861
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-1st 6138  df-2nd 6139  df-grpo 20874  df-ablo 20965  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-nmcv 21172  df-ssp 21314
  Copyright terms: Public domain W3C validator