Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspmlem Structured version   Unicode version

Theorem sspmlem 22231
 Description: Lemma for sspm 22233 and others. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspmlem.y
sspmlem.h
sspmlem.1
sspmlem.2
sspmlem.3
Assertion
Ref Expression
sspmlem
Distinct variable groups:   ,,   ,,   ,,   ,,   ,,   ,,
Allowed substitution hints:   (,)   (,)

Proof of Theorem sspmlem
StepHypRef Expression
1 sspmlem.1 . . . . 5
2 ovres 6213 . . . . . 6
32adantl 453 . . . . 5
41, 3eqtr4d 2471 . . . 4
54ralrimivva 2798 . . 3
6 eqid 2436 . . 3
75, 6jctil 524 . 2
8 sspmlem.h . . . . 5
98sspnv 22225 . . . 4
10 sspmlem.2 . . . 4
11 ffn 5591 . . . 4
129, 10, 113syl 19 . . 3
13 sspmlem.3 . . . . . 6
14 ffn 5591 . . . . . 6
1513, 14syl 16 . . . . 5
1615adantr 452 . . . 4
17 eqid 2436 . . . . . 6
18 sspmlem.y . . . . . 6
1917, 18, 8sspba 22226 . . . . 5
20 xpss12 4981 . . . . 5
2119, 19, 20syl2anc 643 . . . 4
22 fnssres 5558 . . . 4
2316, 21, 22syl2anc 643 . . 3
24 eqfnov 6176 . . 3
2512, 23, 24syl2anc 643 . 2
267, 25mpbird 224 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   wceq 1652   wcel 1725  wral 2705   wss 3320   cxp 4876   cres 4880   wfn 5449  wf 5450  cfv 5454  (class class class)co 6081  cnv 22063  cba 22065  css 22220 This theorem is referenced by:  sspm  22233  sspi  22238  sspims  22240 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-fo 5460  df-fv 5462  df-ov 6084  df-oprab 6085  df-1st 6349  df-2nd 6350  df-vc 22025  df-nv 22071  df-va 22074  df-ba 22075  df-sm 22076  df-nmcv 22079  df-ssp 22221
 Copyright terms: Public domain W3C validator