MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspn Unicode version

Theorem sspn 21328
Description: The norm on a subspace is a restriction of the norm on the parent space. (Contributed by NM, 28-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspn.y  |-  Y  =  ( BaseSet `  W )
sspn.n  |-  N  =  ( normCV `  U )
sspn.m  |-  M  =  ( normCV `  W )
sspn.h  |-  H  =  ( SubSp `  U )
Assertion
Ref Expression
sspn  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  M  =  ( N  |`  Y ) )

Proof of Theorem sspn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sspn.h . . . . 5  |-  H  =  ( SubSp `  U )
21sspnv 21318 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  W  e.  NrmCVec )
3 sspn.y . . . . 5  |-  Y  =  ( BaseSet `  W )
4 sspn.m . . . . 5  |-  M  =  ( normCV `  W )
53, 4nvf 21240 . . . 4  |-  ( W  e.  NrmCVec  ->  M : Y --> RR )
62, 5syl 15 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  M : Y --> RR )
7 ffn 5405 . . 3  |-  ( M : Y --> RR  ->  M  Fn  Y )
86, 7syl 15 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  M  Fn  Y )
9 eqid 2296 . . . . . 6  |-  ( BaseSet `  U )  =  (
BaseSet `  U )
10 sspn.n . . . . . 6  |-  N  =  ( normCV `  U )
119, 10nvf 21240 . . . . 5  |-  ( U  e.  NrmCVec  ->  N : (
BaseSet `  U ) --> RR )
12 ffn 5405 . . . . 5  |-  ( N : ( BaseSet `  U
) --> RR  ->  N  Fn  ( BaseSet `  U )
)
1311, 12syl 15 . . . 4  |-  ( U  e.  NrmCVec  ->  N  Fn  ( BaseSet
`  U ) )
1413adantr 451 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  N  Fn  ( BaseSet `  U )
)
159, 3, 1sspba 21319 . . 3  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  Y  C_  ( BaseSet `  U )
)
16 fnssres 5373 . . 3  |-  ( ( N  Fn  ( BaseSet `  U )  /\  Y  C_  ( BaseSet `  U )
)  ->  ( N  |`  Y )  Fn  Y
)
1714, 15, 16syl2anc 642 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( N  |`  Y )  Fn  Y )
18 ffun 5407 . . . . . . 7  |-  ( N : ( BaseSet `  U
) --> RR  ->  Fun  N )
1911, 18syl 15 . . . . . 6  |-  ( U  e.  NrmCVec  ->  Fun  N )
20 funres 5309 . . . . . 6  |-  ( Fun 
N  ->  Fun  ( N  |`  Y ) )
2119, 20syl 15 . . . . 5  |-  ( U  e.  NrmCVec  ->  Fun  ( N  |`  Y ) )
2221ad2antrr 706 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  x  e.  Y
)  ->  Fun  ( N  |`  Y ) )
23 fnresdm 5369 . . . . . . 7  |-  ( M  Fn  Y  ->  ( M  |`  Y )  =  M )
248, 23syl 15 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( M  |`  Y )  =  M )
25 eqid 2296 . . . . . . . . . 10  |-  ( +v
`  U )  =  ( +v `  U
)
26 eqid 2296 . . . . . . . . . 10  |-  ( +v
`  W )  =  ( +v `  W
)
27 eqid 2296 . . . . . . . . . 10  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
28 eqid 2296 . . . . . . . . . 10  |-  ( .s
OLD `  W )  =  ( .s OLD `  W )
2925, 26, 27, 28, 10, 4, 1isssp 21316 . . . . . . . . 9  |-  ( U  e.  NrmCVec  ->  ( W  e.  H  <->  ( W  e.  NrmCVec 
/\  ( ( +v
`  W )  C_  ( +v `  U )  /\  ( .s OLD `  W )  C_  ( .s OLD `  U )  /\  M  C_  N
) ) ) )
3029simplbda 607 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  (
( +v `  W
)  C_  ( +v `  U )  /\  ( .s OLD `  W ) 
C_  ( .s OLD `  U )  /\  M  C_  N ) )
3130simp3d 969 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  M  C_  N )
32 ssres 4997 . . . . . . 7  |-  ( M 
C_  N  ->  ( M  |`  Y )  C_  ( N  |`  Y ) )
3331, 32syl 15 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  ( M  |`  Y )  C_  ( N  |`  Y ) )
3424, 33eqsstr3d 3226 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  M  C_  ( N  |`  Y ) )
3534adantr 451 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  x  e.  Y
)  ->  M  C_  ( N  |`  Y ) )
36 fdm 5409 . . . . . . . 8  |-  ( M : Y --> RR  ->  dom 
M  =  Y )
375, 36syl 15 . . . . . . 7  |-  ( W  e.  NrmCVec  ->  dom  M  =  Y )
3837eleq2d 2363 . . . . . 6  |-  ( W  e.  NrmCVec  ->  ( x  e. 
dom  M  <->  x  e.  Y
) )
3938biimpar 471 . . . . 5  |-  ( ( W  e.  NrmCVec  /\  x  e.  Y )  ->  x  e.  dom  M )
402, 39sylan 457 . . . 4  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  x  e.  Y
)  ->  x  e.  dom  M )
41 funssfv 5559 . . . 4  |-  ( ( Fun  ( N  |`  Y )  /\  M  C_  ( N  |`  Y )  /\  x  e.  dom  M )  ->  ( ( N  |`  Y ) `  x )  =  ( M `  x ) )
4222, 35, 40, 41syl3anc 1182 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  x  e.  Y
)  ->  ( ( N  |`  Y ) `  x )  =  ( M `  x ) )
4342eqcomd 2301 . 2  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  H )  /\  x  e.  Y
)  ->  ( M `  x )  =  ( ( N  |`  Y ) `
 x ) )
448, 17, 43eqfnfvd 5641 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  H )  ->  M  =  ( N  |`  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    C_ wss 3165   dom cdm 4705    |` cres 4707   Fun wfun 5265    Fn wfn 5266   -->wf 5267   ` cfv 5271   RRcr 8752   NrmCVeccnv 21156   +vcpv 21157   BaseSetcba 21158   .s
OLDcns 21159   normCVcnmcv 21162   SubSpcss 21313
This theorem is referenced by:  sspnval  21329
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-1st 6138  df-2nd 6139  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-nmcv 21172  df-ssp 21314
  Copyright terms: Public domain W3C validator