Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwtr Structured version   Unicode version

Theorem sspwtr 28835
Description: Virtual deduction proof of the right-to-left implication of dftr4 4299. A class which is a subclass of its power class is transitive. This proof corresponds to the virtual deduction proof of sspwtr 28835 without accumulating results. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sspwtr  |-  ( A 
C_  ~P A  ->  Tr  A )

Proof of Theorem sspwtr
Dummy variables  z 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 4296 . . 3  |-  ( Tr  A  <->  A. z A. y
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )
2 idn1 28566 . . . . . . . 8  |-  (. A  C_ 
~P A  ->.  A  C_  ~P A ).
3 idn2 28615 . . . . . . . . 9  |-  (. A  C_ 
~P A ,. (
z  e.  y  /\  y  e.  A )  ->.  ( z  e.  y  /\  y  e.  A ) ).
4 simpr 448 . . . . . . . . 9  |-  ( ( z  e.  y  /\  y  e.  A )  ->  y  e.  A )
53, 4e2 28633 . . . . . . . 8  |-  (. A  C_ 
~P A ,. (
z  e.  y  /\  y  e.  A )  ->.  y  e.  A ).
6 ssel 3334 . . . . . . . 8  |-  ( A 
C_  ~P A  ->  (
y  e.  A  -> 
y  e.  ~P A
) )
72, 5, 6e12 28737 . . . . . . 7  |-  (. A  C_ 
~P A ,. (
z  e.  y  /\  y  e.  A )  ->.  y  e.  ~P A ).
8 elpwi 3799 . . . . . . 7  |-  ( y  e.  ~P A  -> 
y  C_  A )
97, 8e2 28633 . . . . . 6  |-  (. A  C_ 
~P A ,. (
z  e.  y  /\  y  e.  A )  ->.  y 
C_  A ).
10 simpl 444 . . . . . . 7  |-  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  y )
113, 10e2 28633 . . . . . 6  |-  (. A  C_ 
~P A ,. (
z  e.  y  /\  y  e.  A )  ->.  z  e.  y ).
12 ssel 3334 . . . . . 6  |-  ( y 
C_  A  ->  (
z  e.  y  -> 
z  e.  A ) )
139, 11, 12e22 28673 . . . . 5  |-  (. A  C_ 
~P A ,. (
z  e.  y  /\  y  e.  A )  ->.  z  e.  A ).
1413in2 28607 . . . 4  |-  (. A  C_ 
~P A  ->.  ( (
z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ).
1514gen12 28620 . . 3  |-  (. A  C_ 
~P A  ->.  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ).
16 bi2 190 . . 3  |-  ( ( Tr  A  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  -> 
( A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A )  ->  Tr  A ) )
171, 15, 16e01 28693 . 2  |-  (. A  C_ 
~P A  ->.  Tr  A ).
1817in1 28563 1  |-  ( A 
C_  ~P A  ->  Tr  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549    e. wcel 1725    C_ wss 3312   ~Pcpw 3791   Tr wtr 4294
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-in 3319  df-ss 3326  df-pw 3793  df-uni 4008  df-tr 4295  df-vd1 28562  df-vd2 28571
  Copyright terms: Public domain W3C validator