Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrabdv Structured version   Unicode version

Theorem ssrabdv 3414
 Description: Subclass of a restricted class abstraction (deduction rule). (Contributed by NM, 31-Aug-2006.)
Hypotheses
Ref Expression
ssrabdv.1
ssrabdv.2
Assertion
Ref Expression
ssrabdv
Distinct variable groups:   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem ssrabdv
StepHypRef Expression
1 ssrabdv.1 . 2
2 ssrabdv.2 . . 3
32ralrimiva 2781 . 2
4 ssrab 3413 . 2
51, 3, 4sylanbrc 646 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wcel 1725  wral 2697  crab 2701   wss 3312 This theorem is referenced by:  ablfac1eu  15621  lspsolvlem  16204  prdsxmslem2  18549  ovolicc2lem4  19406  abelth2  20348  perfectlem2  21004  cvmlift2lem11  24990  symggen  27343  idomsubgmo  27446  mapdrvallem3  32345 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rab 2706  df-in 3319  df-ss 3326
 Copyright terms: Public domain W3C validator