MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrabdv Unicode version

Theorem ssrabdv 3265
Description: Subclass of a restricted class abstraction (deduction rule). (Contributed by NM, 31-Aug-2006.)
Hypotheses
Ref Expression
ssrabdv.1  |-  ( ph  ->  B  C_  A )
ssrabdv.2  |-  ( (
ph  /\  x  e.  B )  ->  ps )
Assertion
Ref Expression
ssrabdv  |-  ( ph  ->  B  C_  { x  e.  A  |  ps } )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem ssrabdv
StepHypRef Expression
1 ssrabdv.1 . 2  |-  ( ph  ->  B  C_  A )
2 ssrabdv.2 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  ps )
32ralrimiva 2639 . 2  |-  ( ph  ->  A. x  e.  B  ps )
4 ssrab 3264 . 2  |-  ( B 
C_  { x  e.  A  |  ps }  <->  ( B  C_  A  /\  A. x  e.  B  ps ) )
51, 3, 4sylanbrc 645 1  |-  ( ph  ->  B  C_  { x  e.  A  |  ps } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1696   A.wral 2556   {crab 2560    C_ wss 3165
This theorem is referenced by:  ablfac1eu  15324  lspsolvlem  15911  prdsxmslem2  18091  ovolicc2lem4  18895  abelth2  19834  perfectlem2  20485  cvmlift2lem11  23859  symggen  27514  idomsubgmo  27617  mapdrvallem3  32458
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rab 2565  df-in 3172  df-ss 3179
  Copyright terms: Public domain W3C validator