Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssralv2VD Unicode version

Theorem ssralv2VD 28958
Description: Quantification restricted to a subclass for two quantifiers. ssralv 3250 for two quantifiers. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ssralv2 28593 is ssralv2VD 28958 without virtual deductions and was automatically derived from ssralv2VD 28958.
1::  |-  (. ( A  C_  B  /\  C  C_  D )  ->.  ( A  C_  B  /\  C  C_  D ) ).
2::  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D ph  ->.  A. x  e.  B A. y  e.  D ph ).
3:1:  |-  (. ( A  C_  B  /\  C  C_  D )  ->.  A  C_  B ).
4:3,2:  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D ph  ->.  A. x  e.  A A. y  e.  D ph ).
5:4:  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D ph  ->.  A. x ( x  e.  A  ->  A. y  e.  D ph ) ).
6:5:  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D ph  ->.  ( x  e.  A  ->  A. y  e.  D ph ) ).
7::  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D ph ,  x  e.  A  ->.  x  e.  A ).
8:7,6:  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D ph ,  x  e.  A  ->.  A. y  e.  D ph ).
9:1:  |-  (. ( A  C_  B  /\  C  C_  D )  ->.  C  C_  D ).
10:9,8:  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D ph ,  x  e.  A  ->.  A. y  e.  C ph ).
11:10:  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D ph  ->.  ( x  e.  A  ->  A. y  e.  C ph ) ).
12::  |-  ( ( A  C_  B  /\  C  C_  D )  ->  A. x ( A  C_  B  /\  C  C_  D ) )
13::  |-  ( A. x  e.  B A. y  e.  D ph  ->  A. x A. x  e.  B A. y  e.  D ph )
14:12,13,11:  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D ph  ->.  A. x ( x  e.  A  ->  A. y  e.  C ph ) ).
15:14:  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D ph  ->.  A. x  e.  A A. y  e.  C ph ).
16:15:  |-  (. ( A  C_  B  /\  C  C_  D )  ->.  ( A. x  e.  B A. y  e.  D ph  ->  A. x  e.  A A. y  e.  C ph ) ).
qed:16:  |-  ( ( A  C_  B  /\  C  C_  D )  ->  ( A. x  e.  B A. y  e.  D ph  ->  A. x  e.  A A. y  e.  C ph ) )
(Contributed by Alan Sare, 10-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ssralv2VD  |-  ( ( A  C_  B  /\  C  C_  D )  -> 
( A. x  e.  B  A. y  e.  D  ph  ->  A. x  e.  A  A. y  e.  C  ph ) )
Distinct variable groups:    x, A    x, B    x, C    y, C    x, D    y, D
Allowed substitution hints:    ph( x, y)    A( y)    B( y)

Proof of Theorem ssralv2VD
StepHypRef Expression
1 ax-17 1606 . . . . 5  |-  ( ( A  C_  B  /\  C  C_  D )  ->  A. x ( A  C_  B  /\  C  C_  D
) )
2 hbra1 2605 . . . . 5  |-  ( A. x  e.  B  A. y  e.  D  ph  ->  A. x A. x  e.  B  A. y  e.  D  ph )
3 idn1 28641 . . . . . . . 8  |-  (. ( A  C_  B  /\  C  C_  D )  ->.  ( A  C_  B  /\  C  C_  D ) ).
4 simpr 447 . . . . . . . 8  |-  ( ( A  C_  B  /\  C  C_  D )  ->  C  C_  D )
53, 4e1_ 28704 . . . . . . 7  |-  (. ( A  C_  B  /\  C  C_  D )  ->.  C  C_  D ).
6 idn3 28692 . . . . . . . 8  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D  ph ,. x  e.  A  ->.  x  e.  A ).
7 simpl 443 . . . . . . . . . . . 12  |-  ( ( A  C_  B  /\  C  C_  D )  ->  A  C_  B )
83, 7e1_ 28704 . . . . . . . . . . 11  |-  (. ( A  C_  B  /\  C  C_  D )  ->.  A  C_  B ).
9 idn2 28690 . . . . . . . . . . 11  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D  ph  ->.  A. x  e.  B  A. y  e.  D  ph ).
10 ssralv 3250 . . . . . . . . . . 11  |-  ( A 
C_  B  ->  ( A. x  e.  B  A. y  e.  D  ph 
->  A. x  e.  A  A. y  e.  D  ph ) )
118, 9, 10e12 28813 . . . . . . . . . 10  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D  ph  ->.  A. x  e.  A  A. y  e.  D  ph ).
12 df-ral 2561 . . . . . . . . . . 11  |-  ( A. x  e.  A  A. y  e.  D  ph  <->  A. x
( x  e.  A  ->  A. y  e.  D  ph ) )
1312biimpi 186 . . . . . . . . . 10  |-  ( A. x  e.  A  A. y  e.  D  ph  ->  A. x ( x  e.  A  ->  A. y  e.  D  ph ) )
1411, 13e2 28708 . . . . . . . . 9  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D  ph  ->.  A. x
( x  e.  A  ->  A. y  e.  D  ph ) ).
15 sp 1728 . . . . . . . . 9  |-  ( A. x ( x  e.  A  ->  A. y  e.  D  ph )  -> 
( x  e.  A  ->  A. y  e.  D  ph ) )
1614, 15e2 28708 . . . . . . . 8  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D  ph  ->.  ( x  e.  A  ->  A. y  e.  D  ph ) ).
17 pm2.27 35 . . . . . . . 8  |-  ( x  e.  A  ->  (
( x  e.  A  ->  A. y  e.  D  ph )  ->  A. y  e.  D  ph ) )
186, 16, 17e32 28847 . . . . . . 7  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D  ph ,. x  e.  A  ->.  A. y  e.  D  ph ).
19 ssralv 3250 . . . . . . 7  |-  ( C 
C_  D  ->  ( A. y  e.  D  ph 
->  A. y  e.  C  ph ) )
205, 18, 19e13 28837 . . . . . 6  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D  ph ,. x  e.  A  ->.  A. y  e.  C  ph ).
2120in3 28686 . . . . 5  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D  ph  ->.  ( x  e.  A  ->  A. y  e.  C  ph ) ).
221, 2, 21gen21nv 28697 . . . 4  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D  ph  ->.  A. x
( x  e.  A  ->  A. y  e.  C  ph ) ).
23 df-ral 2561 . . . . 5  |-  ( A. x  e.  A  A. y  e.  C  ph  <->  A. x
( x  e.  A  ->  A. y  e.  C  ph ) )
2423biimpri 197 . . . 4  |-  ( A. x ( x  e.  A  ->  A. y  e.  C  ph )  ->  A. x  e.  A  A. y  e.  C  ph )
2522, 24e2 28708 . . 3  |-  (. ( A  C_  B  /\  C  C_  D ) ,. A. x  e.  B  A. y  e.  D  ph  ->.  A. x  e.  A  A. y  e.  C  ph ).
2625in2 28682 . 2  |-  (. ( A  C_  B  /\  C  C_  D )  ->.  ( A. x  e.  B  A. y  e.  D  ph  ->  A. x  e.  A  A. y  e.  C  ph ) ).
2726in1 28638 1  |-  ( ( A  C_  B  /\  C  C_  D )  -> 
( A. x  e.  B  A. y  e.  D  ph  ->  A. x  e.  A  A. y  e.  C  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1530    e. wcel 1696   A.wral 2556    C_ wss 3165
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-ral 2561  df-in 3172  df-ss 3179  df-vd1 28637  df-vd2 28646  df-vd3 28658
  Copyright terms: Public domain W3C validator