Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sstrALT2VD Unicode version

Theorem sstrALT2VD 28610
Description: Virtual deduction proof of sstrALT2 28611. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sstrALT2VD  |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  C )

Proof of Theorem sstrALT2VD
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dfss2 3169 . . 3  |-  ( A 
C_  C  <->  A. x
( x  e.  A  ->  x  e.  C ) )
2 idn1 28342 . . . . . . 7  |-  (. ( A  C_  B  /\  B  C_  C )  ->.  ( A  C_  B  /\  B  C_  C ) ).
3 simpr 447 . . . . . . 7  |-  ( ( A  C_  B  /\  B  C_  C )  ->  B  C_  C )
42, 3e1_ 28399 . . . . . 6  |-  (. ( A  C_  B  /\  B  C_  C )  ->.  B  C_  C ).
5 simpl 443 . . . . . . . 8  |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  B )
62, 5e1_ 28399 . . . . . . 7  |-  (. ( A  C_  B  /\  B  C_  C )  ->.  A  C_  B ).
7 idn2 28385 . . . . . . 7  |-  (. ( A  C_  B  /\  B  C_  C ) ,. x  e.  A  ->.  x  e.  A ).
8 ssel2 3175 . . . . . . 7  |-  ( ( A  C_  B  /\  x  e.  A )  ->  x  e.  B )
96, 7, 8e12an 28500 . . . . . 6  |-  (. ( A  C_  B  /\  B  C_  C ) ,. x  e.  A  ->.  x  e.  B ).
10 ssel2 3175 . . . . . 6  |-  ( ( B  C_  C  /\  x  e.  B )  ->  x  e.  C )
114, 9, 10e12an 28500 . . . . 5  |-  (. ( A  C_  B  /\  B  C_  C ) ,. x  e.  A  ->.  x  e.  C ).
1211in2 28377 . . . 4  |-  (. ( A  C_  B  /\  B  C_  C )  ->.  ( x  e.  A  ->  x  e.  C ) ).
1312gen11 28388 . . 3  |-  (. ( A  C_  B  /\  B  C_  C )  ->.  A. x
( x  e.  A  ->  x  e.  C ) ).
14 bi2 189 . . 3  |-  ( ( A  C_  C  <->  A. x
( x  e.  A  ->  x  e.  C ) )  ->  ( A. x ( x  e.  A  ->  x  e.  C )  ->  A  C_  C ) )
151, 13, 14e01 28463 . 2  |-  (. ( A  C_  B  /\  B  C_  C )  ->.  A  C_  C ).
1615in1 28339 1  |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527    e. wcel 1684    C_ wss 3152
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-in 3159  df-ss 3166  df-vd1 28338  df-vd2 28347
  Copyright terms: Public domain W3C validator