Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sstrALT2VD Unicode version

Theorem sstrALT2VD 28926
Description: Virtual deduction proof of sstrALT2 28927. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sstrALT2VD  |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  C )

Proof of Theorem sstrALT2VD
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dfss2 3182 . . 3  |-  ( A 
C_  C  <->  A. x
( x  e.  A  ->  x  e.  C ) )
2 idn1 28641 . . . . . . 7  |-  (. ( A  C_  B  /\  B  C_  C )  ->.  ( A  C_  B  /\  B  C_  C ) ).
3 simpr 447 . . . . . . 7  |-  ( ( A  C_  B  /\  B  C_  C )  ->  B  C_  C )
42, 3e1_ 28704 . . . . . 6  |-  (. ( A  C_  B  /\  B  C_  C )  ->.  B  C_  C ).
5 simpl 443 . . . . . . . 8  |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  B )
62, 5e1_ 28704 . . . . . . 7  |-  (. ( A  C_  B  /\  B  C_  C )  ->.  A  C_  B ).
7 idn2 28690 . . . . . . 7  |-  (. ( A  C_  B  /\  B  C_  C ) ,. x  e.  A  ->.  x  e.  A ).
8 ssel2 3188 . . . . . . 7  |-  ( ( A  C_  B  /\  x  e.  A )  ->  x  e.  B )
96, 7, 8e12an 28814 . . . . . 6  |-  (. ( A  C_  B  /\  B  C_  C ) ,. x  e.  A  ->.  x  e.  B ).
10 ssel2 3188 . . . . . 6  |-  ( ( B  C_  C  /\  x  e.  B )  ->  x  e.  C )
114, 9, 10e12an 28814 . . . . 5  |-  (. ( A  C_  B  /\  B  C_  C ) ,. x  e.  A  ->.  x  e.  C ).
1211in2 28682 . . . 4  |-  (. ( A  C_  B  /\  B  C_  C )  ->.  ( x  e.  A  ->  x  e.  C ) ).
1312gen11 28693 . . 3  |-  (. ( A  C_  B  /\  B  C_  C )  ->.  A. x
( x  e.  A  ->  x  e.  C ) ).
14 bi2 189 . . 3  |-  ( ( A  C_  C  <->  A. x
( x  e.  A  ->  x  e.  C ) )  ->  ( A. x ( x  e.  A  ->  x  e.  C )  ->  A  C_  C ) )
151, 13, 14e01 28768 . 2  |-  (. ( A  C_  B  /\  B  C_  C )  ->.  A  C_  C ).
1615in1 28638 1  |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1530    e. wcel 1696    C_ wss 3165
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-in 3172  df-ss 3179  df-vd1 28637  df-vd2 28646
  Copyright terms: Public domain W3C validator