MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssun Unicode version

Theorem ssun 3354
Description: A condition that implies inclusion in the union of two classes. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
ssun  |-  ( ( A  C_  B  \/  A  C_  C )  ->  A  C_  ( B  u.  C ) )

Proof of Theorem ssun
StepHypRef Expression
1 ssun3 3340 . 2  |-  ( A 
C_  B  ->  A  C_  ( B  u.  C
) )
2 ssun4 3341 . 2  |-  ( A 
C_  C  ->  A  C_  ( B  u.  C
) )
31, 2jaoi 368 1  |-  ( ( A  C_  B  \/  A  C_  C )  ->  A  C_  ( B  u.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    u. cun 3150    C_ wss 3152
This theorem is referenced by:  pwunss  4298  pwssun  4299  ordssun  4492
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-un 3157  df-in 3159  df-ss 3166
  Copyright terms: Public domain W3C validator