MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssundif Unicode version

Theorem ssundif 3675
Description: A condition equivalent to inclusion in the union of two classes. (Contributed by NM, 26-Mar-2007.)
Assertion
Ref Expression
ssundif  |-  ( A 
C_  ( B  u.  C )  <->  ( A  \  B )  C_  C
)

Proof of Theorem ssundif
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pm5.6 879 . . . 4  |-  ( ( ( x  e.  A  /\  -.  x  e.  B
)  ->  x  e.  C )  <->  ( x  e.  A  ->  ( x  e.  B  \/  x  e.  C ) ) )
2 eldif 3294 . . . . 5  |-  ( x  e.  ( A  \  B )  <->  ( x  e.  A  /\  -.  x  e.  B ) )
32imbi1i 316 . . . 4  |-  ( ( x  e.  ( A 
\  B )  ->  x  e.  C )  <->  ( ( x  e.  A  /\  -.  x  e.  B
)  ->  x  e.  C ) )
4 elun 3452 . . . . 5  |-  ( x  e.  ( B  u.  C )  <->  ( x  e.  B  \/  x  e.  C ) )
54imbi2i 304 . . . 4  |-  ( ( x  e.  A  ->  x  e.  ( B  u.  C ) )  <->  ( x  e.  A  ->  ( x  e.  B  \/  x  e.  C ) ) )
61, 3, 53bitr4ri 270 . . 3  |-  ( ( x  e.  A  ->  x  e.  ( B  u.  C ) )  <->  ( x  e.  ( A  \  B
)  ->  x  e.  C ) )
76albii 1572 . 2  |-  ( A. x ( x  e.  A  ->  x  e.  ( B  u.  C
) )  <->  A. x
( x  e.  ( A  \  B )  ->  x  e.  C
) )
8 dfss2 3301 . 2  |-  ( A 
C_  ( B  u.  C )  <->  A. x
( x  e.  A  ->  x  e.  ( B  u.  C ) ) )
9 dfss2 3301 . 2  |-  ( ( A  \  B ) 
C_  C  <->  A. x
( x  e.  ( A  \  B )  ->  x  e.  C
) )
107, 8, 93bitr4i 269 1  |-  ( A 
C_  ( B  u.  C )  <->  ( A  \  B )  C_  C
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359   A.wal 1546    e. wcel 1721    \ cdif 3281    u. cun 3282    C_ wss 3284
This theorem is referenced by:  difcom  3676  uneqdifeq  3680  ssunsn2  3922  elpwun  4719  soex  5282  frfi  7315  cantnfp1lem3  7596  dfacfin7  8239  zornn0g  8345  fpwwe2lem13  8477  hashbclem  11660  incexclem  12575  ramub1lem1  13353  lpcls  17386  cmpcld  17423  alexsubALTlem3  18037  restmetu  18574  uniiccdif  19427  abelthlem2  20305  abelthlem3  20306
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-v 2922  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298
  Copyright terms: Public domain W3C validator