MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssunieq Unicode version

Theorem ssunieq 3860
Description: Relationship implying union. (Contributed by NM, 10-Nov-1999.)
Assertion
Ref Expression
ssunieq  |-  ( ( A  e.  B  /\  A. x  e.  B  x 
C_  A )  ->  A  =  U. B )
Distinct variable groups:    x, A    x, B

Proof of Theorem ssunieq
StepHypRef Expression
1 elssuni 3855 . . 3  |-  ( A  e.  B  ->  A  C_ 
U. B )
2 unissb 3857 . . . 4  |-  ( U. B  C_  A  <->  A. x  e.  B  x  C_  A
)
32biimpri 197 . . 3  |-  ( A. x  e.  B  x  C_  A  ->  U. B  C_  A )
41, 3anim12i 549 . 2  |-  ( ( A  e.  B  /\  A. x  e.  B  x 
C_  A )  -> 
( A  C_  U. B  /\  U. B  C_  A
) )
5 eqss 3194 . 2  |-  ( A  =  U. B  <->  ( A  C_ 
U. B  /\  U. B  C_  A ) )
64, 5sylibr 203 1  |-  ( ( A  e.  B  /\  A. x  e.  B  x 
C_  A )  ->  A  =  U. B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543    C_ wss 3152   U.cuni 3827
This theorem is referenced by:  unimax  3861  shsspwh  21825  intopcoaconlem3b  25538  intopcoaconlem3  25539
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-v 2790  df-in 3159  df-ss 3166  df-uni 3828
  Copyright terms: Public domain W3C validator