MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssxpb Unicode version

Theorem ssxpb 5244
Description: A cross-product subclass relationship is equivalent to the relationship for it components. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
ssxpb  |-  ( ( A  X.  B )  =/=  (/)  ->  ( ( A  X.  B )  C_  ( C  X.  D
)  <->  ( A  C_  C  /\  B  C_  D
) ) )

Proof of Theorem ssxpb
StepHypRef Expression
1 xpnz 5233 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  <->  ( A  X.  B )  =/=  (/) )
2 dmxp 5029 . . . . . . . . 9  |-  ( B  =/=  (/)  ->  dom  ( A  X.  B )  =  A )
32adantl 453 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  dom  ( A  X.  B
)  =  A )
41, 3sylbir 205 . . . . . . 7  |-  ( ( A  X.  B )  =/=  (/)  ->  dom  ( A  X.  B )  =  A )
54adantr 452 . . . . . 6  |-  ( ( ( A  X.  B
)  =/=  (/)  /\  ( A  X.  B )  C_  ( C  X.  D
) )  ->  dom  ( A  X.  B
)  =  A )
6 dmss 5010 . . . . . . 7  |-  ( ( A  X.  B ) 
C_  ( C  X.  D )  ->  dom  ( A  X.  B
)  C_  dom  ( C  X.  D ) )
76adantl 453 . . . . . 6  |-  ( ( ( A  X.  B
)  =/=  (/)  /\  ( A  X.  B )  C_  ( C  X.  D
) )  ->  dom  ( A  X.  B
)  C_  dom  ( C  X.  D ) )
85, 7eqsstr3d 3327 . . . . 5  |-  ( ( ( A  X.  B
)  =/=  (/)  /\  ( A  X.  B )  C_  ( C  X.  D
) )  ->  A  C_ 
dom  ( C  X.  D ) )
9 dmxpss 5241 . . . . 5  |-  dom  ( C  X.  D )  C_  C
108, 9syl6ss 3304 . . . 4  |-  ( ( ( A  X.  B
)  =/=  (/)  /\  ( A  X.  B )  C_  ( C  X.  D
) )  ->  A  C_  C )
11 rnxp 5240 . . . . . . . . 9  |-  ( A  =/=  (/)  ->  ran  ( A  X.  B )  =  B )
1211adantr 452 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\  B  =/=  (/) )  ->  ran  ( A  X.  B
)  =  B )
131, 12sylbir 205 . . . . . . 7  |-  ( ( A  X.  B )  =/=  (/)  ->  ran  ( A  X.  B )  =  B )
1413adantr 452 . . . . . 6  |-  ( ( ( A  X.  B
)  =/=  (/)  /\  ( A  X.  B )  C_  ( C  X.  D
) )  ->  ran  ( A  X.  B
)  =  B )
15 rnss 5039 . . . . . . 7  |-  ( ( A  X.  B ) 
C_  ( C  X.  D )  ->  ran  ( A  X.  B
)  C_  ran  ( C  X.  D ) )
1615adantl 453 . . . . . 6  |-  ( ( ( A  X.  B
)  =/=  (/)  /\  ( A  X.  B )  C_  ( C  X.  D
) )  ->  ran  ( A  X.  B
)  C_  ran  ( C  X.  D ) )
1714, 16eqsstr3d 3327 . . . . 5  |-  ( ( ( A  X.  B
)  =/=  (/)  /\  ( A  X.  B )  C_  ( C  X.  D
) )  ->  B  C_ 
ran  ( C  X.  D ) )
18 rnxpss 5242 . . . . 5  |-  ran  ( C  X.  D )  C_  D
1917, 18syl6ss 3304 . . . 4  |-  ( ( ( A  X.  B
)  =/=  (/)  /\  ( A  X.  B )  C_  ( C  X.  D
) )  ->  B  C_  D )
2010, 19jca 519 . . 3  |-  ( ( ( A  X.  B
)  =/=  (/)  /\  ( A  X.  B )  C_  ( C  X.  D
) )  ->  ( A  C_  C  /\  B  C_  D ) )
2120ex 424 . 2  |-  ( ( A  X.  B )  =/=  (/)  ->  ( ( A  X.  B )  C_  ( C  X.  D
)  ->  ( A  C_  C  /\  B  C_  D ) ) )
22 xpss12 4922 . 2  |-  ( ( A  C_  C  /\  B  C_  D )  -> 
( A  X.  B
)  C_  ( C  X.  D ) )
2321, 22impbid1 195 1  |-  ( ( A  X.  B )  =/=  (/)  ->  ( ( A  X.  B )  C_  ( C  X.  D
)  <->  ( A  C_  C  /\  B  C_  D
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    =/= wne 2551    C_ wss 3264   (/)c0 3572    X. cxp 4817   dom cdm 4819   ran crn 4820
This theorem is referenced by:  xp11  5245  dibord  31275
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pr 4345
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-op 3767  df-br 4155  df-opab 4209  df-xp 4825  df-rel 4826  df-cnv 4827  df-dm 4829  df-rn 4830
  Copyright terms: Public domain W3C validator