Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirling Unicode version

Theorem stirling 27250
Description: Stirling's approximation formula for  n factorial. The proof follows two major steps: first it is proven that  S and  n factorial are asymptotically equivalent, up to an unknown constant. Then, using Wallis' formula for π it is proven that the unknown constant is the square root of π and then the exact Stirling's formula is established. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
stirling.1  |-  S  =  ( n  e.  NN0  |->  ( ( sqr `  (
( 2  x.  pi )  x.  n )
)  x.  ( ( n  /  _e ) ^ n ) ) )
Assertion
Ref Expression
stirling  |-  ( n  e.  NN  |->  ( ( ! `  n )  /  ( S `  n ) ) )  ~~>  1

Proof of Theorem stirling
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . 3  |-  ( n  e.  NN  |->  ( ( ! `  n )  /  ( ( sqr `  ( 2  x.  n
) )  x.  (
( n  /  _e ) ^ n ) ) ) )  =  ( n  e.  NN  |->  ( ( ! `  n
)  /  ( ( sqr `  ( 2  x.  n ) )  x.  ( ( n  /  _e ) ^
n ) ) ) )
2 eqid 2283 . . 3  |-  ( n  e.  NN  |->  ( log `  ( ( n  e.  NN  |->  ( ( ! `
 n )  / 
( ( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) ) `  n
) ) )  =  ( n  e.  NN  |->  ( log `  ( ( n  e.  NN  |->  ( ( ! `  n
)  /  ( ( sqr `  ( 2  x.  n ) )  x.  ( ( n  /  _e ) ^
n ) ) ) ) `  n ) ) )
31, 2stirlinglem14 27248 . 2  |-  E. c  e.  RR+  ( n  e.  NN  |->  ( ( ! `
 n )  / 
( ( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )  ~~>  c
4 nfv 1605 . . . . . 6  |-  F/ n  c  e.  RR+
5 nfmpt1 4109 . . . . . . 7  |-  F/_ n
( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
6 nfcv 2419 . . . . . . 7  |-  F/_ n  ~~>
7 nfcv 2419 . . . . . . 7  |-  F/_ n
c
85, 6, 7nfbr 4067 . . . . . 6  |-  F/ n
( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )  ~~>  c
94, 8nfan 1771 . . . . 5  |-  F/ n
( c  e.  RR+  /\  ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )  ~~>  c )
10 stirling.1 . . . . 5  |-  S  =  ( n  e.  NN0  |->  ( ( sqr `  (
( 2  x.  pi )  x.  n )
)  x.  ( ( n  /  _e ) ^ n ) ) )
11 eqid 2283 . . . . 5  |-  ( n  e.  NN  |->  ( ( n  e.  NN  |->  ( ( ! `  n
)  /  ( ( sqr `  ( 2  x.  n ) )  x.  ( ( n  /  _e ) ^
n ) ) ) ) `  ( 2  x.  n ) ) )  =  ( n  e.  NN  |->  ( ( n  e.  NN  |->  ( ( ! `  n
)  /  ( ( sqr `  ( 2  x.  n ) )  x.  ( ( n  /  _e ) ^
n ) ) ) ) `  ( 2  x.  n ) ) )
12 eqid 2283 . . . . 5  |-  ( n  e.  NN  |->  ( ( sqr `  ( 2  x.  n ) )  x.  ( ( n  /  _e ) ^
n ) ) )  =  ( n  e.  NN  |->  ( ( sqr `  ( 2  x.  n
) )  x.  (
( n  /  _e ) ^ n ) ) )
13 eqid 2283 . . . . 5  |-  ( n  e.  NN  |->  ( ( ( ( 2 ^ ( 4  x.  n
) )  x.  (
( ! `  n
) ^ 4 ) )  /  ( ( ! `  ( 2  x.  n ) ) ^ 2 ) )  /  ( ( 2  x.  n )  +  1 ) ) )  =  ( n  e.  NN  |->  ( ( ( ( 2 ^ (
4  x.  n ) )  x.  ( ( ! `  n ) ^ 4 ) )  /  ( ( ! `
 ( 2  x.  n ) ) ^
2 ) )  / 
( ( 2  x.  n )  +  1 ) ) )
14 eqid 2283 . . . . 5  |-  ( n  e.  NN  |->  ( ( ( ( n  e.  NN  |->  ( ( ! `
 n )  / 
( ( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) ) `  n
) ^ 4 )  /  ( ( ( n  e.  NN  |->  ( ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) ) `  (
2  x.  n ) ) ) `  n
) ^ 2 ) ) )  =  ( n  e.  NN  |->  ( ( ( ( n  e.  NN  |->  ( ( ! `  n )  /  ( ( sqr `  ( 2  x.  n
) )  x.  (
( n  /  _e ) ^ n ) ) ) ) `  n
) ^ 4 )  /  ( ( ( n  e.  NN  |->  ( ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) ) `  (
2  x.  n ) ) ) `  n
) ^ 2 ) ) )
15 eqid 2283 . . . . 5  |-  ( n  e.  NN  |->  ( ( n ^ 2 )  /  ( n  x.  ( ( 2  x.  n )  +  1 ) ) ) )  =  ( n  e.  NN  |->  ( ( n ^ 2 )  / 
( n  x.  (
( 2  x.  n
)  +  1 ) ) ) )
16 simpl 443 . . . . 5  |-  ( ( c  e.  RR+  /\  (
n  e.  NN  |->  ( ( ! `  n
)  /  ( ( sqr `  ( 2  x.  n ) )  x.  ( ( n  /  _e ) ^
n ) ) ) )  ~~>  c )  -> 
c  e.  RR+ )
17 simpr 447 . . . . 5  |-  ( ( c  e.  RR+  /\  (
n  e.  NN  |->  ( ( ! `  n
)  /  ( ( sqr `  ( 2  x.  n ) )  x.  ( ( n  /  _e ) ^
n ) ) ) )  ~~>  c )  -> 
( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )  ~~>  c )
189, 10, 1, 11, 12, 13, 14, 15, 16, 17stirlinglem15 27249 . . . 4  |-  ( ( c  e.  RR+  /\  (
n  e.  NN  |->  ( ( ! `  n
)  /  ( ( sqr `  ( 2  x.  n ) )  x.  ( ( n  /  _e ) ^
n ) ) ) )  ~~>  c )  -> 
( n  e.  NN  |->  ( ( ! `  n )  /  ( S `  n )
) )  ~~>  1 )
1918ex 423 . . 3  |-  ( c  e.  RR+  ->  ( ( n  e.  NN  |->  ( ( ! `  n
)  /  ( ( sqr `  ( 2  x.  n ) )  x.  ( ( n  /  _e ) ^
n ) ) ) )  ~~>  c  ->  (
n  e.  NN  |->  ( ( ! `  n
)  /  ( S `
 n ) ) )  ~~>  1 ) )
2019rexlimiv 2661 . 2  |-  ( E. c  e.  RR+  (
n  e.  NN  |->  ( ( ! `  n
)  /  ( ( sqr `  ( 2  x.  n ) )  x.  ( ( n  /  _e ) ^
n ) ) ) )  ~~>  c  ->  (
n  e.  NN  |->  ( ( ! `  n
)  /  ( S `
 n ) ) )  ~~>  1 )
213, 20ax-mp 8 1  |-  ( n  e.  NN  |->  ( ( ! `  n )  /  ( S `  n ) ) )  ~~>  1
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1623    e. wcel 1684   E.wrex 2544   class class class wbr 4023    e. cmpt 4077   ` cfv 5255  (class class class)co 5858   1c1 8738    + caddc 8740    x. cmul 8742    / cdiv 9423   NNcn 9746   2c2 9795   4c4 9797   NN0cn0 9965   RR+crp 10354   ^cexp 11104   !cfa 11288   sqrcsqr 11718    ~~> cli 11958   _eceu 12344   picpi 12348   logclog 19912
This theorem is referenced by:  stirlingr  27251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cc 8061  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-ofr 6079  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-e 12350  df-sin 12351  df-cos 12352  df-tan 12353  df-pi 12354  df-dvds 12532  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-cmp 17114  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-ovol 18824  df-vol 18825  df-mbf 18975  df-itg1 18976  df-itg2 18977  df-ibl 18978  df-itg 18979  df-0p 19025  df-limc 19216  df-dv 19217  df-ulm 19756  df-log 19914  df-cxp 19915
  Copyright terms: Public domain W3C validator