Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem10 Unicode version

Theorem stirlinglem10 27935
Description: A bound for any B(N)-B(N + 1) that will allow to find a lower bound for the whole  B sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem10.1  |-  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
stirlinglem10.2  |-  B  =  ( n  e.  NN  |->  ( log `  ( A `
 n ) ) )
stirlinglem10.4  |-  K  =  ( k  e.  NN  |->  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) ) ) )
stirlinglem10.5  |-  L  =  ( k  e.  NN  |->  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ k
) )
Assertion
Ref Expression
stirlinglem10  |-  ( N  e.  NN  ->  (
( B `  N
)  -  ( B `
 ( N  + 
1 ) ) )  <_  ( ( 1  /  4 )  x.  ( 1  /  ( N  x.  ( N  +  1 ) ) ) ) )
Distinct variable groups:    k, n    n, K    n, L    k, N, n
Allowed substitution hints:    A( k, n)    B( k, n)    K( k)    L( k)

Proof of Theorem stirlinglem10
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 10279 . 2  |-  NN  =  ( ZZ>= `  1 )
2 1nn0 9997 . . . 4  |-  1  e.  NN0
32a1i 10 . . 3  |-  ( N  e.  NN  ->  1  e.  NN0 )
43nn0zd 10131 . 2  |-  ( N  e.  NN  ->  1  e.  ZZ )
5 stirlinglem10.1 . . 3  |-  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
6 stirlinglem10.2 . . 3  |-  B  =  ( n  e.  NN  |->  ( log `  ( A `
 n ) ) )
7 eqid 2296 . . 3  |-  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n
) )  /  2
)  x.  ( log `  ( ( n  + 
1 )  /  n
) ) )  - 
1 ) )  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 ) )
8 stirlinglem10.4 . . 3  |-  K  =  ( k  e.  NN  |->  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) ) ) )
95, 6, 7, 8stirlinglem9 27934 . 2  |-  ( N  e.  NN  ->  seq  1 (  +  ,  K )  ~~>  ( ( B `  N )  -  ( B `  ( N  +  1
) ) ) )
10 2cn 9832 . . . . . . . . 9  |-  2  e.  CC
1110a1i 10 . . . . . . . 8  |-  ( N  e.  NN  ->  2  e.  CC )
12 nncn 9770 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  CC )
1311, 12mulcld 8871 . . . . . . 7  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  CC )
14 ax-1cn 8811 . . . . . . . 8  |-  1  e.  CC
1514a1i 10 . . . . . . 7  |-  ( N  e.  NN  ->  1  e.  CC )
1613, 15addcld 8870 . . . . . 6  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  e.  CC )
1716sqcld 11259 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  e.  CC )
18 0re 8854 . . . . . . . 8  |-  0  e.  RR
1918a1i 10 . . . . . . 7  |-  ( N  e.  NN  ->  0  e.  RR )
20 1re 8853 . . . . . . . . 9  |-  1  e.  RR
2120a1i 10 . . . . . . . 8  |-  ( N  e.  NN  ->  1  e.  RR )
22 2re 9831 . . . . . . . . . . 11  |-  2  e.  RR
2322a1i 10 . . . . . . . . . 10  |-  ( N  e.  NN  ->  2  e.  RR )
24 nnre 9769 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  RR )
2523, 24remulcld 8879 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  RR )
2625, 21readdcld 8878 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  e.  RR )
27 0lt1 9312 . . . . . . . . 9  |-  0  <  1
2827a1i 10 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <  1 )
29 2rp 10375 . . . . . . . . . . 11  |-  2  e.  RR+
3029a1i 10 . . . . . . . . . 10  |-  ( N  e.  NN  ->  2  e.  RR+ )
31 nnrp 10379 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  RR+ )
3230, 31rpmulcld 10422 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  RR+ )
3321, 32ltaddrp2d 10436 . . . . . . . 8  |-  ( N  e.  NN  ->  1  <  ( ( 2  x.  N )  +  1 ) )
3419, 21, 26, 28, 33lttrd 8993 . . . . . . 7  |-  ( N  e.  NN  ->  0  <  ( ( 2  x.  N )  +  1 ) )
3519, 34gtned 8970 . . . . . 6  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  =/=  0 )
36 2z 10070 . . . . . . 7  |-  2  e.  ZZ
3736a1i 10 . . . . . 6  |-  ( N  e.  NN  ->  2  e.  ZZ )
3816, 35, 37expne0d 11267 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  =/=  0 )
3917, 38reccld 9545 . . . 4  |-  ( N  e.  NN  ->  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) )  e.  CC )
4021renegcld 9226 . . . . . . 7  |-  ( N  e.  NN  ->  -u 1  e.  RR )
4126, 35, 37reexpclzd 11286 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  e.  RR )
4221, 41, 38redivcld 9604 . . . . . . 7  |-  ( N  e.  NN  ->  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) )  e.  RR )
43 lt0neg2 9297 . . . . . . . . 9  |-  ( 1  e.  RR  ->  (
0  <  1  <->  -u 1  <  0 ) )
4420, 43ax-mp 8 . . . . . . . 8  |-  ( 0  <  1  <->  -u 1  <  0 )
4528, 44sylib 188 . . . . . . 7  |-  ( N  e.  NN  ->  -u 1  <  0 )
4626, 35sqgt0d 11289 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <  ( ( ( 2  x.  N )  +  1 ) ^ 2 ) )
4741, 46recgt0d 9707 . . . . . . 7  |-  ( N  e.  NN  ->  0  <  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) )
4840, 19, 42, 45, 47lttrd 8993 . . . . . 6  |-  ( N  e.  NN  ->  -u 1  <  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) )
49 2nn 9893 . . . . . . . . . 10  |-  2  e.  NN
5049a1i 10 . . . . . . . . 9  |-  ( N  e.  NN  ->  2  e.  NN )
5126, 50, 333jca 1132 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 )  e.  RR  /\  2  e.  NN  /\  1  <  ( ( 2  x.  N )  +  1 ) ) )
52 expgt1 11156 . . . . . . . 8  |-  ( ( ( ( 2  x.  N )  +  1 )  e.  RR  /\  2  e.  NN  /\  1  <  ( ( 2  x.  N )  +  1 ) )  ->  1  <  ( ( ( 2  x.  N )  +  1 ) ^ 2 ) )
5351, 52syl 15 . . . . . . 7  |-  ( N  e.  NN  ->  1  <  ( ( ( 2  x.  N )  +  1 ) ^ 2 ) )
5441, 46elrpd 10404 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  e.  RR+ )
5554recgt1d 10420 . . . . . . 7  |-  ( N  e.  NN  ->  (
1  <  ( (
( 2  x.  N
)  +  1 ) ^ 2 )  <->  ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  <  1 ) )
5653, 55mpbid 201 . . . . . 6  |-  ( N  e.  NN  ->  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) )  <  1 )
5748, 56jca 518 . . . . 5  |-  ( N  e.  NN  ->  ( -u 1  <  ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  /\  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  <  1 ) )
5842, 21absltd 11928 . . . . 5  |-  ( N  e.  NN  ->  (
( abs `  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) )  <  1  <->  ( -u 1  <  ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  /\  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  <  1 ) ) )
5957, 58mpbird 223 . . . 4  |-  ( N  e.  NN  ->  ( abs `  ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) )  <  1 )
60 stirlinglem10.5 . . . . . 6  |-  L  =  ( k  e.  NN  |->  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ k
) )
6160a1i 10 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  ->  L  =  ( k  e.  NN  |->  ( ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) ^
k ) ) )
62 simpr 447 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  /\  k  =  j )  ->  k  =  j )
6362oveq2d 5890 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  /\  k  =  j )  ->  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ k
)  =  ( ( 1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) ^ j ) )
64 elnnuz 10280 . . . . . . 7  |-  ( j  e.  NN  <->  j  e.  ( ZZ>= `  1 )
)
6564biimpri 197 . . . . . 6  |-  ( j  e.  ( ZZ>= `  1
)  ->  j  e.  NN )
6665adantl 452 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  -> 
j  e.  NN )
6739adantr 451 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  -> 
( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  e.  CC )
6866nnnn0d 10034 . . . . . 6  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  -> 
j  e.  NN0 )
6967, 68expcld 11261 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  -> 
( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ j
)  e.  CC )
7061, 63, 66, 69fvmptd 5622 . . . 4  |-  ( ( N  e.  NN  /\  j  e.  ( ZZ>= ` 
1 ) )  -> 
( L `  j
)  =  ( ( 1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) ^ j ) )
7139, 59, 3, 70geolim2 12343 . . 3  |-  ( N  e.  NN  ->  seq  1 (  +  ,  L )  ~~>  ( ( ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ 1 )  /  ( 1  -  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ) ) )
7239exp1d 11256 . . . . 5  |-  ( N  e.  NN  ->  (
( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ 1 )  =  ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) )
7317, 38dividd 9550 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 ) ^ 2 )  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) )  =  1 )
7473eqcomd 2301 . . . . . . 7  |-  ( N  e.  NN  ->  1  =  ( ( ( ( 2  x.  N
)  +  1 ) ^ 2 )  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) )
7574oveq1d 5889 . . . . . 6  |-  ( N  e.  NN  ->  (
1  -  ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) )  =  ( ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  -  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ) )
7654rpcnne0d 10415 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 ) ^ 2 )  e.  CC  /\  ( ( ( 2  x.  N )  +  1 ) ^ 2 )  =/=  0 ) )
7717, 15, 763jca 1132 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 ) ^ 2 )  e.  CC  /\  1  e.  CC  /\  (
( ( ( 2  x.  N )  +  1 ) ^ 2 )  e.  CC  /\  ( ( ( 2  x.  N )  +  1 ) ^ 2 )  =/=  0 ) ) )
78 divsubdir 9472 . . . . . . . 8  |-  ( ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  e.  CC  /\  1  e.  CC  /\  (
( ( ( 2  x.  N )  +  1 ) ^ 2 )  e.  CC  /\  ( ( ( 2  x.  N )  +  1 ) ^ 2 )  =/=  0 ) )  ->  ( (
( ( ( 2  x.  N )  +  1 ) ^ 2 )  -  1 )  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  =  ( ( ( ( ( 2  x.  N
)  +  1 ) ^ 2 )  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) )  -  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) ) )
7977, 78syl 15 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  -  1 )  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) )  =  ( ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  -  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ) )
8079eqcomd 2301 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  -  ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) )  =  ( ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  -  1 )  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) )
8113, 15jca 518 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  e.  CC  /\  1  e.  CC )
)
82 binom2 11234 . . . . . . . . . 10  |-  ( ( ( 2  x.  N
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  N )  +  1 ) ^ 2 )  =  ( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( ( 2  x.  N )  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
8381, 82syl 15 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 ) ^ 2 )  =  ( ( ( ( 2  x.  N
) ^ 2 )  +  ( 2  x.  ( ( 2  x.  N )  x.  1 ) ) )  +  ( 1 ^ 2 ) ) )
8483oveq1d 5889 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 ) ^ 2 )  -  1 )  =  ( ( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( ( 2  x.  N )  x.  1 ) ) )  +  ( 1 ^ 2 ) )  - 
1 ) )
8550nnnn0d 10034 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  2  e.  NN0 )
8611, 12, 85mulexpd 11276 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( 2  x.  N
) ^ 2 )  =  ( ( 2 ^ 2 )  x.  ( N ^ 2 ) ) )
87 sq2 11215 . . . . . . . . . . . . . . 15  |-  ( 2 ^ 2 )  =  4
8887a1i 10 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
2 ^ 2 )  =  4 )
8988oveq1d 5889 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( 2 ^ 2 )  x.  ( N ^ 2 ) )  =  ( 4  x.  ( N ^ 2 ) ) )
9086, 89eqtrd 2328 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( 2  x.  N
) ^ 2 )  =  ( 4  x.  ( N ^ 2 ) ) )
9113mulid1d 8868 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  x.  1 )  =  ( 2  x.  N ) )
9291oveq2d 5890 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
2  x.  ( ( 2  x.  N )  x.  1 ) )  =  ( 2  x.  ( 2  x.  N
) ) )
9311, 11, 12mulassd 8874 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( 2  x.  2 )  x.  N )  =  ( 2  x.  ( 2  x.  N
) ) )
9493eqcomd 2301 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
2  x.  ( 2  x.  N ) )  =  ( ( 2  x.  2 )  x.  N ) )
95 2t2e4 9887 . . . . . . . . . . . . . . 15  |-  ( 2  x.  2 )  =  4
9695a1i 10 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
2  x.  2 )  =  4 )
9796oveq1d 5889 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( 2  x.  2 )  x.  N )  =  ( 4  x.  N ) )
9892, 94, 973eqtrd 2332 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
2  x.  ( ( 2  x.  N )  x.  1 ) )  =  ( 4  x.  N ) )
9990, 98oveq12d 5892 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( ( 2  x.  N )  x.  1 ) ) )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
100 4cn 9836 . . . . . . . . . . . . . 14  |-  4  e.  CC
101100a1i 10 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  4  e.  CC )
10212sqcld 11259 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  ( N ^ 2 )  e.  CC )
103101, 102, 12adddid 8875 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
4  x.  ( ( N ^ 2 )  +  N ) )  =  ( ( 4  x.  ( N ^
2 ) )  +  ( 4  x.  N
) ) )
104103eqcomd 2301 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 4  x.  ( N ^ 2 ) )  +  ( 4  x.  N ) )  =  ( 4  x.  (
( N ^ 2 )  +  N ) ) )
10512sqvald 11258 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  ( N ^ 2 )  =  ( N  x.  N
) )
10612mulid1d 8868 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  ( N  x.  1 )  =  N )
107106eqcomd 2301 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  =  ( N  x.  1 ) )
108105, 107oveq12d 5892 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( N ^ 2 )  +  N )  =  ( ( N  x.  N )  +  ( N  x.  1 ) ) )
10912, 12, 15adddid 8875 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  ( N  x.  ( N  +  1 ) )  =  ( ( N  x.  N )  +  ( N  x.  1 ) ) )
110109eqcomd 2301 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( N  x.  N
)  +  ( N  x.  1 ) )  =  ( N  x.  ( N  +  1
) ) )
111108, 110eqtrd 2328 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( N ^ 2 )  +  N )  =  ( N  x.  ( N  +  1
) ) )
112111oveq2d 5890 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
4  x.  ( ( N ^ 2 )  +  N ) )  =  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) )
11399, 104, 1123eqtrd 2332 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  ( ( 2  x.  N )  x.  1 ) ) )  =  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) )
114 sq1 11214 . . . . . . . . . . 11  |-  ( 1 ^ 2 )  =  1
115114a1i 10 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1 ^ 2 )  =  1 )
116113, 115oveq12d 5892 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N ) ^
2 )  +  ( 2  x.  ( ( 2  x.  N )  x.  1 ) ) )  +  ( 1 ^ 2 ) )  =  ( ( 4  x.  ( N  x.  ( N  +  1
) ) )  +  1 ) )
117116oveq1d 5889 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N ) ^ 2 )  +  ( 2  x.  (
( 2  x.  N
)  x.  1 ) ) )  +  ( 1 ^ 2 ) )  -  1 )  =  ( ( ( 4  x.  ( N  x.  ( N  + 
1 ) ) )  +  1 )  - 
1 ) )
11812, 15addcld 8870 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  CC )
11912, 118mulcld 8871 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  x.  ( N  +  1 ) )  e.  CC )
120101, 119mulcld 8871 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
4  x.  ( N  x.  ( N  + 
1 ) ) )  e.  CC )
121120, 15pncand 9174 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( 4  x.  ( N  x.  ( N  +  1 ) ) )  +  1 )  -  1 )  =  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) )
12284, 117, 1213eqtrd 2332 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 ) ^ 2 )  -  1 )  =  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) )
123122oveq1d 5889 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  -  1 )  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) )  =  ( ( 4  x.  ( N  x.  ( N  +  1
) ) )  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) )
12475, 80, 1233eqtrd 2332 . . . . 5  |-  ( N  e.  NN  ->  (
1  -  ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) )  =  ( ( 4  x.  ( N  x.  ( N  +  1
) ) )  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) )
12572, 124oveq12d 5892 . . . 4  |-  ( N  e.  NN  ->  (
( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ 1 )  /  ( 1  -  ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ) )  =  ( ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  / 
( ( 4  x.  ( N  x.  ( N  +  1 ) ) )  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ) )
126 4pos 9848 . . . . . . . . 9  |-  0  <  4
127126a1i 10 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <  4 )
12819, 127gtned 8970 . . . . . . 7  |-  ( N  e.  NN  ->  4  =/=  0 )
129 nnne0 9794 . . . . . . . 8  |-  ( N  e.  NN  ->  N  =/=  0 )
13024, 21readdcld 8878 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR )
131 nngt0 9791 . . . . . . . . . 10  |-  ( N  e.  NN  ->  0  <  N )
13224ltp1d 9703 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  <  ( N  +  1 ) )
13319, 24, 130, 131, 132lttrd 8993 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <  ( N  +  1 ) )
13419, 133gtned 8970 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  +  1 )  =/=  0 )
13512, 118, 129, 134mulne0d 9436 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  x.  ( N  +  1 ) )  =/=  0 )
136101, 119, 128, 135mulne0d 9436 . . . . . 6  |-  ( N  e.  NN  ->  (
4  x.  ( N  x.  ( N  + 
1 ) ) )  =/=  0 )
13715, 17, 120, 17, 38, 38, 136divdivdivd 9599 . . . . 5  |-  ( N  e.  NN  ->  (
( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  /  ( ( 4  x.  ( N  x.  ( N  + 
1 ) ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) )  =  ( ( 1  x.  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  / 
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  x.  (
4  x.  ( N  x.  ( N  + 
1 ) ) ) ) ) )
13815, 17mulcomd 8872 . . . . . 6  |-  ( N  e.  NN  ->  (
1  x.  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) )  =  ( ( ( ( 2  x.  N
)  +  1 ) ^ 2 )  x.  1 ) )
139138oveq1d 5889 . . . . 5  |-  ( N  e.  NN  ->  (
( 1  x.  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  /  ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  x.  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) ) )  =  ( ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  x.  1 )  / 
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  x.  (
4  x.  ( N  x.  ( N  + 
1 ) ) ) ) ) )
14017, 17, 15, 120, 38, 136divmuldivd 9593 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  x.  ( 1  /  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) ) )  =  ( ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  x.  1 )  / 
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  x.  (
4  x.  ( N  x.  ( N  + 
1 ) ) ) ) ) )
141140eqcomd 2301 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  x.  1 )  /  ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  x.  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) ) )  =  ( ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) )  x.  ( 1  /  (
4  x.  ( N  x.  ( N  + 
1 ) ) ) ) ) )
14215mulid1d 8868 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  x.  1 )  =  1 )
143142eqcomd 2301 . . . . . . . . 9  |-  ( N  e.  NN  ->  1  =  ( 1  x.  1 ) )
144143oveq1d 5889 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  /  ( 4  x.  ( N  x.  ( N  +  1
) ) ) )  =  ( ( 1  x.  1 )  / 
( 4  x.  ( N  x.  ( N  +  1 ) ) ) ) )
14515, 101, 15, 119, 128, 135divmuldivd 9593 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( 1  /  4
)  x.  ( 1  /  ( N  x.  ( N  +  1
) ) ) )  =  ( ( 1  x.  1 )  / 
( 4  x.  ( N  x.  ( N  +  1 ) ) ) ) )
146145eqcomd 2301 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 1  x.  1 )  /  ( 4  x.  ( N  x.  ( N  +  1
) ) ) )  =  ( ( 1  /  4 )  x.  ( 1  /  ( N  x.  ( N  +  1 ) ) ) ) )
147144, 146eqtrd 2328 . . . . . . 7  |-  ( N  e.  NN  ->  (
1  /  ( 4  x.  ( N  x.  ( N  +  1
) ) ) )  =  ( ( 1  /  4 )  x.  ( 1  /  ( N  x.  ( N  +  1 ) ) ) ) )
14873, 147oveq12d 5892 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  x.  ( 1  /  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) ) )  =  ( 1  x.  ( ( 1  / 
4 )  x.  (
1  /  ( N  x.  ( N  + 
1 ) ) ) ) ) )
149101, 128reccld 9545 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  /  4 )  e.  CC )
150119, 135reccld 9545 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  /  ( N  x.  ( N  + 
1 ) ) )  e.  CC )
151149, 150mulcld 8871 . . . . . . 7  |-  ( N  e.  NN  ->  (
( 1  /  4
)  x.  ( 1  /  ( N  x.  ( N  +  1
) ) ) )  e.  CC )
152151mulid2d 8869 . . . . . 6  |-  ( N  e.  NN  ->  (
1  x.  ( ( 1  /  4 )  x.  ( 1  / 
( N  x.  ( N  +  1 ) ) ) ) )  =  ( ( 1  /  4 )  x.  ( 1  /  ( N  x.  ( N  +  1 ) ) ) ) )
153141, 148, 1523eqtrd 2332 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 ) ^
2 )  x.  1 )  /  ( ( ( ( 2  x.  N )  +  1 ) ^ 2 )  x.  ( 4  x.  ( N  x.  ( N  +  1 ) ) ) ) )  =  ( ( 1  /  4 )  x.  ( 1  /  ( N  x.  ( N  +  1 ) ) ) ) )
154137, 139, 1533eqtrd 2332 . . . 4  |-  ( N  e.  NN  ->  (
( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) )  /  ( ( 4  x.  ( N  x.  ( N  + 
1 ) ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) )  =  ( ( 1  /  4 )  x.  ( 1  /  ( N  x.  ( N  +  1 ) ) ) ) )
155125, 154eqtrd 2328 . . 3  |-  ( N  e.  NN  ->  (
( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ 1 )  /  ( 1  -  ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ) )  =  ( ( 1  /  4 )  x.  ( 1  /  ( N  x.  ( N  +  1 ) ) ) ) )
15671, 155breqtrd 4063 . 2  |-  ( N  e.  NN  ->  seq  1 (  +  ,  L )  ~~>  ( ( 1  /  4 )  x.  ( 1  / 
( N  x.  ( N  +  1 ) ) ) ) )
15764biimpi 186 . . . 4  |-  ( j  e.  NN  ->  j  e.  ( ZZ>= `  1 )
)
158157adantl 452 . . 3  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  j  e.  ( ZZ>= ` 
1 ) )
1598a1i 10 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  K  =  ( k  e.  NN  |->  ( ( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  k ) ) ) ) )
160 oveq2 5882 . . . . . . . . . 10  |-  ( k  =  n  ->  (
2  x.  k )  =  ( 2  x.  n ) )
161160oveq1d 5889 . . . . . . . . 9  |-  ( k  =  n  ->  (
( 2  x.  k
)  +  1 )  =  ( ( 2  x.  n )  +  1 ) )
162161oveq2d 5890 . . . . . . . 8  |-  ( k  =  n  ->  (
1  /  ( ( 2  x.  k )  +  1 ) )  =  ( 1  / 
( ( 2  x.  n )  +  1 ) ) )
163160oveq2d 5890 . . . . . . . 8  |-  ( k  =  n  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) )  =  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) ) )
164162, 163oveq12d 5892 . . . . . . 7  |-  ( k  =  n  ->  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  k ) ) )  =  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) ) )
165164adantl 452 . . . . . 6  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  /\  k  =  n )  ->  ( (
1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  k
) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  n ) ) ) )
166 elfznn 10835 . . . . . . 7  |-  ( n  e.  ( 1 ... j )  ->  n  e.  NN )
167166adantl 452 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  n  e.  NN )
16810a1i 10 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  2  e.  CC )
169167nncnd 9778 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  n  e.  CC )
170168, 169mulcld 8871 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  n )  e.  CC )
17114a1i 10 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  1  e.  CC )
172170, 171addcld 8870 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 2  x.  n )  +  1 )  e.  CC )
17318a1i 10 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... j )  ->  0  e.  RR )
17418a1i 10 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  0  e.  RR )
17520a1i 10 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  1  e.  RR )
17622a1i 10 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  2  e.  RR )
177 nnre 9769 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  n  e.  RR )
178176, 177remulcld 8879 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  RR )
179178, 175readdcld 8878 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  e.  RR )
18027a1i 10 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  0  <  1 )
18129a1i 10 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  2  e.  RR+ )
182 nnrp 10379 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  n  e.  RR+ )
183181, 182rpmulcld 10422 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  RR+ )
184175, 183ltaddrp2d 10436 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  1  <  ( ( 2  x.  n )  +  1 ) )
185174, 175, 179, 180, 184lttrd 8993 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  0  <  ( ( 2  x.  n )  +  1 ) )
186166, 185syl 15 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... j )  ->  0  <  ( ( 2  x.  n )  +  1 ) )
187173, 186gtned 8970 . . . . . . . . 9  |-  ( n  e.  ( 1 ... j )  ->  (
( 2  x.  n
)  +  1 )  =/=  0 )
188187adantl 452 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 2  x.  n )  +  1 )  =/=  0
)
189172, 188reccld 9545 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( 2  x.  n )  +  1 ) )  e.  CC )
19012adantr 451 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  N  e.  CC )
191168, 190mulcld 8871 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  N )  e.  CC )
192191, 171addcld 8870 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 2  x.  N )  +  1 )  e.  CC )
19335adantr 451 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 2  x.  N )  +  1 )  =/=  0
)
194192, 193reccld 9545 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( 2  x.  N )  +  1 ) )  e.  CC )
195 2nn0 9998 . . . . . . . . . 10  |-  2  e.  NN0
196195a1i 10 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  2  e.  NN0 )
197167nnnn0d 10034 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  n  e.  NN0 )
198196, 197nn0mulcld 10039 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  n )  e.  NN0 )
199194, 198expcld 11261 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) )  e.  CC )
200189, 199mulcld 8871 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) )  e.  CC )
201159, 165, 167, 200fvmptd 5622 . . . . 5  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  =  ( ( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  n ) ) ) )
202201adantlr 695 . . . 4  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  =  ( ( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  n ) ) ) )
203174, 185gtned 8970 . . . . . . . 8  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  =/=  0 )
204175, 179, 203redivcld 9604 . . . . . . 7  |-  ( n  e.  NN  ->  (
1  /  ( ( 2  x.  n )  +  1 ) )  e.  RR )
205166, 204syl 15 . . . . . 6  |-  ( n  e.  ( 1 ... j )  ->  (
1  /  ( ( 2  x.  n )  +  1 ) )  e.  RR )
206205adantl 452 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1  /  ( ( 2  x.  n )  +  1 ) )  e.  RR )
20726, 35rereccld 9603 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  N )  +  1 ) )  e.  RR )
208207adantr 451 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( 2  x.  N )  +  1 ) )  e.  RR )
209208, 198reexpcld 11278 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) )  e.  RR )
210209adantlr 695 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  n ) )  e.  RR )
211206, 210remulcld 8879 . . . 4  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) ) )  e.  RR )
212202, 211eqeltrd 2370 . . 3  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  e.  RR )
213 readdcl 8836 . . . 4  |-  ( ( n  e.  RR  /\  i  e.  RR )  ->  ( n  +  i )  e.  RR )
214213adantl 452 . . 3  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  RR  /\  i  e.  RR ) )  -> 
( n  +  i )  e.  RR )
215158, 212, 214seqcl 11082 . 2  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  (  seq  1 (  +  ,  K ) `
 j )  e.  RR )
21660a1i 10 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  L  =  ( k  e.  NN  |->  ( ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ k ) ) )
217 oveq2 5882 . . . . . . 7  |-  ( k  =  n  ->  (
( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ k )  =  ( ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) ^
n ) )
218217adantl 452 . . . . . 6  |-  ( ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  /\  k  =  n )  ->  ( (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) ^ k )  =  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n
) )
21939adantr 451 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) )  e.  CC )
220219, 197expcld 11261 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) ^
n )  e.  CC )
221216, 218, 167, 220fvmptd 5622 . . . . 5  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( L `  n )  =  ( ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n ) )
22242adantr 451 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) )  e.  RR )
223222, 197reexpcld 11278 . . . . 5  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) ^
n )  e.  RR )
224221, 223eqeltrd 2370 . . . 4  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( L `  n )  e.  RR )
225224adantlr 695 . . 3  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( L `  n )  e.  RR )
226158, 225, 214seqcl 11082 . 2  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  (  seq  1 (  +  ,  L ) `
 j )  e.  RR )
227171, 192, 193, 198expdivd 11275 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) )  =  ( ( 1 ^ (
2  x.  n ) )  /  ( ( ( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) ) ) )
22836a1i 10 . . . . . . . . . . . . 13  |-  ( n  e.  ( 1 ... j )  ->  2  e.  ZZ )
229 elfzelz 10814 . . . . . . . . . . . . 13  |-  ( n  e.  ( 1 ... j )  ->  n  e.  ZZ )
230228, 229zmulcld 10139 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... j )  ->  (
2  x.  n )  e.  ZZ )
231 1exp 11147 . . . . . . . . . . . 12  |-  ( ( 2  x.  n )  e.  ZZ  ->  (
1 ^ ( 2  x.  n ) )  =  1 )
232230, 231syl 15 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... j )  ->  (
1 ^ ( 2  x.  n ) )  =  1 )
233 1exp 11147 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  (
1 ^ n )  =  1 )
234229, 233syl 15 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... j )  ->  (
1 ^ n )  =  1 )
235234eqcomd 2301 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... j )  ->  1  =  ( 1 ^ n ) )
236232, 235eqtrd 2328 . . . . . . . . . 10  |-  ( n  e.  ( 1 ... j )  ->  (
1 ^ ( 2  x.  n ) )  =  ( 1 ^ n ) )
237236adantl 452 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1 ^ ( 2  x.  n
) )  =  ( 1 ^ n ) )
238192, 197, 196expmuld 11264 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( ( 2  x.  N )  +  1 ) ^
( 2  x.  n
) )  =  ( ( ( ( 2  x.  N )  +  1 ) ^ 2 ) ^ n ) )
239237, 238oveq12d 5892 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1 ^ ( 2  x.  n ) )  / 
( ( ( 2  x.  N )  +  1 ) ^ (
2  x.  n ) ) )  =  ( ( 1 ^ n
)  /  ( ( ( ( 2  x.  N )  +  1 ) ^ 2 ) ^ n ) ) )
240192sqcld 11259 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( ( 2  x.  N )  +  1 ) ^
2 )  e.  CC )
24136a1i 10 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  2  e.  ZZ )
242192, 193, 241expne0d 11267 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( ( 2  x.  N )  +  1 ) ^
2 )  =/=  0
)
243171, 240, 242, 197expdivd 11275 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) ^
n )  =  ( ( 1 ^ n
)  /  ( ( ( ( 2  x.  N )  +  1 ) ^ 2 ) ^ n ) ) )
244243eqcomd 2301 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1 ^ n )  / 
( ( ( ( 2  x.  N )  +  1 ) ^
2 ) ^ n
) )  =  ( ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n ) )
245227, 239, 2443eqtrd 2332 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) )  =  ( ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n ) )
246245oveq2d 5890 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) )  =  ( ( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) ^ n ) ) )
247 1rp 10374 . . . . . . . . . . 11  |-  1  e.  RR+
248247a1i 10 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  1  e.  RR+ )
24922a1i 10 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  2  e.  RR )
250167, 177syl 15 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  n  e.  RR )
251249, 250remulcld 8879 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  n )  e.  RR )
252196nn0ge0d 10037 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  0  <_  2
)
253197nn0ge0d 10037 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  0  <_  n
)
254249, 250, 252, 253mulge0d 9365 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  0  <_  (
2  x.  n ) )
255251, 254ge0p1rpd 10432 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 2  x.  n )  +  1 )  e.  RR+ )
25620a1i 10 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  1  e.  RR )
257248rpge0d 10410 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  0  <_  1
)
258175, 179, 184ltled 8983 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  1  <_  ( ( 2  x.  n )  +  1 ) )
259166, 258syl 15 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... j )  ->  1  <_  ( ( 2  x.  n )  +  1 ) )
260259adantl 452 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  1  <_  (
( 2  x.  n
)  +  1 ) )
261248, 255, 256, 257, 260lediv2ad 10428 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( 2  x.  n )  +  1 ) )  <_  (
1  /  1 ) )
262171div1d 9544 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
1 )  =  1 )
263261, 262breqtrd 4063 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( 2  x.  n )  +  1 ) )  <_  1
)
264167, 204syl 15 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( 2  x.  n )  +  1 ) )  e.  RR )
26524adantr 451 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  N  e.  RR )
266249, 265remulcld 8879 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  N )  e.  RR )
26719, 24, 131ltled 8983 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  0  <_  N )
268267adantr 451 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  0  <_  N
)
269249, 265, 252, 268mulge0d 9365 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  0  <_  (
2  x.  N ) )
270266, 269ge0p1rpd 10432 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 2  x.  N )  +  1 )  e.  RR+ )
271270, 241rpexpcld 11284 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( ( 2  x.  N )  +  1 ) ^
2 )  e.  RR+ )
272271rpreccld 10416 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) )  e.  RR+ )
273229adantl 452 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  n  e.  ZZ )
274272, 273rpexpcld 11284 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( ( 2  x.  N )  +  1 ) ^
2 ) ) ^
n )  e.  RR+ )
275264, 256, 274lemul1d 10445 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  <_ 
1  <->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n
) )  <_  (
1  x.  ( ( 1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) ^ n ) ) ) )
276263, 275mpbid 201 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n
) )  <_  (
1  x.  ( ( 1  /  ( ( ( 2  x.  N
)  +  1 ) ^ 2 ) ) ^ n ) ) )
277220mulid2d 8869 . . . . . . 7  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( 1  x.  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n
) )  =  ( ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n ) )
278276, 277breqtrd 4063 . . . . . 6  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n
) )  <_  (
( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n ) )
279246, 278eqbrtrd 4059 . . . . 5  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) )  <_  (
( 1  /  (
( ( 2  x.  N )  +  1 ) ^ 2 ) ) ^ n ) )
280279, 201, 2213brtr4d 4069 . . . 4  |-  ( ( N  e.  NN  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  <_  ( L `  n )
)
281280adantlr 695 . . 3  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  <_  ( L `  n )
)
282158, 212, 225, 281serle 11117 . 2  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  (  seq  1 (  +  ,  K ) `
 j )  <_ 
(  seq  1 (  +  ,  L ) `
 j ) )
2831, 4, 9, 156, 215, 226, 282climle 12129 1  |-  ( N  e.  NN  ->  (
( B `  N
)  -  ( B `
 ( N  + 
1 ) ) )  <_  ( ( 1  /  4 )  x.  ( 1  /  ( N  x.  ( N  +  1 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039    e. cmpt 4093   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884    - cmin 9053   -ucneg 9054    / cdiv 9439   NNcn 9762   2c2 9811   4c4 9813   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   RR+crp 10370   ...cfz 10798    seq cseq 11062   ^cexp 11120   !cfa 11304   sqrcsqr 11734   abscabs 11735    ~~> cli 11974   _eceu 12360   logclog 19928
This theorem is referenced by:  stirlinglem12  27937
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-e 12366  df-sin 12367  df-cos 12368  df-tan 12369  df-pi 12370  df-dvds 12548  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-cmp 17130  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-ulm 19772  df-log 19930  df-cxp 19931
  Copyright terms: Public domain W3C validator