Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem4 Structured version   Unicode version

Theorem stirlinglem4 27802
Description: Algebraic manipulation of  ( ( B n ) - ( B  ( n  +  1 ) ) ). It will be used in other theorems to show that  B is decreasing. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem4.1  |-  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
stirlinglem4.2  |-  B  =  ( n  e.  NN  |->  ( log `  ( A `
 n ) ) )
stirlinglem4.3  |-  J  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 ) )
Assertion
Ref Expression
stirlinglem4  |-  ( N  e.  NN  ->  (
( B `  N
)  -  ( B `
 ( N  + 
1 ) ) )  =  ( J `  N ) )
Distinct variable group:    n, N
Allowed substitution hints:    A( n)    B( n)    J( n)

Proof of Theorem stirlinglem4
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnre 10007 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR )
2 nnnn0 10228 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  NN0 )
32nn0ge0d 10277 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <_  N )
41, 3ge0p1rpd 10674 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR+ )
5 nnrp 10621 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  RR+ )
64, 5rpdivcld 10665 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  N )  e.  RR+ )
76rpsqrcld 12214 . . . . 5  |-  ( N  e.  NN  ->  ( sqr `  ( ( N  +  1 )  /  N ) )  e.  RR+ )
8 nnz 10303 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
96, 8rpexpcld 11546 . . . . 5  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  N
) ^ N )  e.  RR+ )
107, 9rpmulcld 10664 . . . 4  |-  ( N  e.  NN  ->  (
( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) )  e.  RR+ )
11 epr 12807 . . . . 5  |-  _e  e.  RR+
1211a1i 11 . . . 4  |-  ( N  e.  NN  ->  _e  e.  RR+ )
1310, 12relogdivd 20521 . . 3  |-  ( N  e.  NN  ->  ( log `  ( ( ( sqr `  ( ( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) )  /  _e ) )  =  ( ( log `  (
( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) ) )  -  ( log `  _e ) ) )
147, 9relogmuld 20520 . . . . . 6  |-  ( N  e.  NN  ->  ( log `  ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  N
) ^ N ) ) )  =  ( ( log `  ( sqr `  ( ( N  +  1 )  /  N ) ) )  +  ( log `  (
( ( N  + 
1 )  /  N
) ^ N ) ) ) )
15 logsqr 20595 . . . . . . . 8  |-  ( ( ( N  +  1 )  /  N )  e.  RR+  ->  ( log `  ( sqr `  (
( N  +  1 )  /  N ) ) )  =  ( ( log `  (
( N  +  1 )  /  N ) )  /  2 ) )
166, 15syl 16 . . . . . . 7  |-  ( N  e.  NN  ->  ( log `  ( sqr `  (
( N  +  1 )  /  N ) ) )  =  ( ( log `  (
( N  +  1 )  /  N ) )  /  2 ) )
17 relogexp 20490 . . . . . . . 8  |-  ( ( ( ( N  + 
1 )  /  N
)  e.  RR+  /\  N  e.  ZZ )  ->  ( log `  ( ( ( N  +  1 )  /  N ) ^ N ) )  =  ( N  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )
186, 8, 17syl2anc 643 . . . . . . 7  |-  ( N  e.  NN  ->  ( log `  ( ( ( N  +  1 )  /  N ) ^ N ) )  =  ( N  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )
1916, 18oveq12d 6099 . . . . . 6  |-  ( N  e.  NN  ->  (
( log `  ( sqr `  ( ( N  +  1 )  /  N ) ) )  +  ( log `  (
( ( N  + 
1 )  /  N
) ^ N ) ) )  =  ( ( ( log `  (
( N  +  1 )  /  N ) )  /  2 )  +  ( N  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) ) )
2014, 19eqtrd 2468 . . . . 5  |-  ( N  e.  NN  ->  ( log `  ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  N
) ^ N ) ) )  =  ( ( ( log `  (
( N  +  1 )  /  N ) )  /  2 )  +  ( N  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) ) )
21 peano2nn 10012 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
2221nncnd 10016 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  CC )
23 nncn 10008 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  CC )
24 nnne0 10032 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  =/=  0 )
2522, 23, 24divcld 9790 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  N )  e.  CC )
2621nnne0d 10044 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  =/=  0 )
2722, 23, 26, 24divne0d 9806 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  N )  =/=  0 )
2825, 27logcld 20468 . . . . . . 7  |-  ( N  e.  NN  ->  ( log `  ( ( N  +  1 )  /  N ) )  e.  CC )
29 2cn 10070 . . . . . . . 8  |-  2  e.  CC
3029a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  2  e.  CC )
31 2rp 10617 . . . . . . . . 9  |-  2  e.  RR+
3231a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  2  e.  RR+ )
3332rpne0d 10653 . . . . . . 7  |-  ( N  e.  NN  ->  2  =/=  0 )
3428, 30, 33divrec2d 9794 . . . . . 6  |-  ( N  e.  NN  ->  (
( log `  (
( N  +  1 )  /  N ) )  /  2 )  =  ( ( 1  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) ) )
3534oveq1d 6096 . . . . 5  |-  ( N  e.  NN  ->  (
( ( log `  (
( N  +  1 )  /  N ) )  /  2 )  +  ( N  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )  =  ( ( ( 1  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  +  ( N  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) ) )
36 ax-1cn 9048 . . . . . . . . 9  |-  1  e.  CC
3736a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  1  e.  CC )
3837halfcld 10212 . . . . . . 7  |-  ( N  e.  NN  ->  (
1  /  2 )  e.  CC )
3938, 23, 28adddird 9113 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( 1  / 
2 )  +  N
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  =  ( ( ( 1  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  +  ( N  x.  ( log `  ( ( N  + 
1 )  /  N
) ) ) ) )
4023, 30, 33divcan4d 9796 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( N  x.  2 )  /  2 )  =  N )
4123, 30mulcomd 9109 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( N  x.  2 )  =  ( 2  x.  N ) )
4241oveq1d 6096 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( N  x.  2 )  /  2 )  =  ( ( 2  x.  N )  / 
2 ) )
4340, 42eqtr3d 2470 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  =  ( ( 2  x.  N )  / 
2 ) )
4443oveq2d 6097 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 1  /  2
)  +  N )  =  ( ( 1  /  2 )  +  ( ( 2  x.  N )  /  2
) ) )
4530, 23mulcld 9108 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  CC )
4637, 45, 30, 33divdird 9828 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 1  +  ( 2  x.  N ) )  /  2 )  =  ( ( 1  /  2 )  +  ( ( 2  x.  N )  /  2
) ) )
4744, 46eqtr4d 2471 . . . . . . 7  |-  ( N  e.  NN  ->  (
( 1  /  2
)  +  N )  =  ( ( 1  +  ( 2  x.  N ) )  / 
2 ) )
4847oveq1d 6096 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( 1  / 
2 )  +  N
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  =  ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )
4939, 48eqtr3d 2470 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 1  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  +  ( N  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )  =  ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) ) )
5020, 35, 493eqtrd 2472 . . . 4  |-  ( N  e.  NN  ->  ( log `  ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  N
) ^ N ) ) )  =  ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) ) )
51 loge 20481 . . . . 5  |-  ( log `  _e )  =  1
5251a1i 11 . . . 4  |-  ( N  e.  NN  ->  ( log `  _e )  =  1 )
5350, 52oveq12d 6099 . . 3  |-  ( N  e.  NN  ->  (
( log `  (
( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) ) )  -  ( log `  _e ) )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 ) )
5413, 53eqtrd 2468 . 2  |-  ( N  e.  NN  ->  ( log `  ( ( ( sqr `  ( ( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) )  /  _e ) )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  -  1 ) )
55 stirlinglem4.1 . . . . . . 7  |-  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
5655stirlinglem2 27800 . . . . . 6  |-  ( N  e.  NN  ->  ( A `  N )  e.  RR+ )
5756relogcld 20518 . . . . 5  |-  ( N  e.  NN  ->  ( log `  ( A `  N ) )  e.  RR )
58 nfcv 2572 . . . . . 6  |-  F/_ n N
59 nfcv 2572 . . . . . . 7  |-  F/_ n log
60 nfmpt1 4298 . . . . . . . . 9  |-  F/_ n
( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
6155, 60nfcxfr 2569 . . . . . . . 8  |-  F/_ n A
6261, 58nffv 5735 . . . . . . 7  |-  F/_ n
( A `  N
)
6359, 62nffv 5735 . . . . . 6  |-  F/_ n
( log `  ( A `  N )
)
64 fveq2 5728 . . . . . . 7  |-  ( n  =  N  ->  ( A `  n )  =  ( A `  N ) )
6564fveq2d 5732 . . . . . 6  |-  ( n  =  N  ->  ( log `  ( A `  n ) )  =  ( log `  ( A `  N )
) )
66 stirlinglem4.2 . . . . . 6  |-  B  =  ( n  e.  NN  |->  ( log `  ( A `
 n ) ) )
6758, 63, 65, 66fvmptf 5821 . . . . 5  |-  ( ( N  e.  NN  /\  ( log `  ( A `
 N ) )  e.  RR )  -> 
( B `  N
)  =  ( log `  ( A `  N
) ) )
6857, 67mpdan 650 . . . 4  |-  ( N  e.  NN  ->  ( B `  N )  =  ( log `  ( A `  N )
) )
69 nfcv 2572 . . . . . . . 8  |-  F/_ k
( log `  ( A `  n )
)
70 nfcv 2572 . . . . . . . . . 10  |-  F/_ n
k
7161, 70nffv 5735 . . . . . . . . 9  |-  F/_ n
( A `  k
)
7259, 71nffv 5735 . . . . . . . 8  |-  F/_ n
( log `  ( A `  k )
)
73 fveq2 5728 . . . . . . . . 9  |-  ( n  =  k  ->  ( A `  n )  =  ( A `  k ) )
7473fveq2d 5732 . . . . . . . 8  |-  ( n  =  k  ->  ( log `  ( A `  n ) )  =  ( log `  ( A `  k )
) )
7569, 72, 74cbvmpt 4299 . . . . . . 7  |-  ( n  e.  NN  |->  ( log `  ( A `  n
) ) )  =  ( k  e.  NN  |->  ( log `  ( A `
 k ) ) )
7666, 75eqtri 2456 . . . . . 6  |-  B  =  ( k  e.  NN  |->  ( log `  ( A `
 k ) ) )
7776a1i 11 . . . . 5  |-  ( N  e.  NN  ->  B  =  ( k  e.  NN  |->  ( log `  ( A `  k )
) ) )
78 simpr 448 . . . . . . 7  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  k  =  ( N  +  1 ) )
7978fveq2d 5732 . . . . . 6  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( A `  k )  =  ( A `  ( N  +  1 ) ) )
8079fveq2d 5732 . . . . 5  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( log `  ( A `  k )
)  =  ( log `  ( A `  ( N  +  1 ) ) ) )
8155stirlinglem2 27800 . . . . . . 7  |-  ( ( N  +  1 )  e.  NN  ->  ( A `  ( N  +  1 ) )  e.  RR+ )
8221, 81syl 16 . . . . . 6  |-  ( N  e.  NN  ->  ( A `  ( N  +  1 ) )  e.  RR+ )
8382relogcld 20518 . . . . 5  |-  ( N  e.  NN  ->  ( log `  ( A `  ( N  +  1
) ) )  e.  RR )
8477, 80, 21, 83fvmptd 5810 . . . 4  |-  ( N  e.  NN  ->  ( B `  ( N  +  1 ) )  =  ( log `  ( A `  ( N  +  1 ) ) ) )
8568, 84oveq12d 6099 . . 3  |-  ( N  e.  NN  ->  (
( B `  N
)  -  ( B `
 ( N  + 
1 ) ) )  =  ( ( log `  ( A `  N
) )  -  ( log `  ( A `  ( N  +  1
) ) ) ) )
8656, 82relogdivd 20521 . . 3  |-  ( N  e.  NN  ->  ( log `  ( ( A `
 N )  / 
( A `  ( N  +  1 ) ) ) )  =  ( ( log `  ( A `  N )
)  -  ( log `  ( A `  ( N  +  1 ) ) ) ) )
87 faccl 11576 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
88 nnrp 10621 . . . . . . . . 9  |-  ( ( ! `  N )  e.  NN  ->  ( ! `  N )  e.  RR+ )
892, 87, 883syl 19 . . . . . . . 8  |-  ( N  e.  NN  ->  ( ! `  N )  e.  RR+ )
9032, 5rpmulcld 10664 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  RR+ )
9190rpsqrcld 12214 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( sqr `  ( 2  x.  N ) )  e.  RR+ )
925, 12rpdivcld 10665 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  /  _e )  e.  RR+ )
9392, 8rpexpcld 11546 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( N  /  _e ) ^ N )  e.  RR+ )
9491, 93rpmulcld 10664 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) )  e.  RR+ )
9589, 94rpdivcld 10665 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  ( ( sqr `  ( 2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )
9655a1i 11 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  ( ( sqr `  ( 2  x.  n
) )  x.  (
( n  /  _e ) ^ n ) ) ) ) )
97 simpr 448 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  n  =  N )
9897fveq2d 5732 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  ( ! `  n )  =  ( ! `  N ) )
9997oveq2d 6097 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  ( 2  x.  n )  =  ( 2  x.  N
) )
10099fveq2d 5732 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  ( sqr `  ( 2  x.  n
) )  =  ( sqr `  ( 2  x.  N ) ) )
10197oveq1d 6096 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  ( n  /  _e )  =  ( N  /  _e ) )
102101, 97oveq12d 6099 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  ( (
n  /  _e ) ^ n )  =  ( ( N  /  _e ) ^ N ) )
103100, 102oveq12d 6099 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  ( ( sqr `  ( 2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) )  =  ( ( sqr `  ( 2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )
10498, 103oveq12d 6099 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  n  =  N
)  ->  ( ( ! `  n )  /  ( ( sqr `  ( 2  x.  n
) )  x.  (
( n  /  _e ) ^ n ) ) )  =  ( ( ! `  N )  /  ( ( sqr `  ( 2  x.  N
) )  x.  (
( N  /  _e ) ^ N ) ) ) )
105 simpl 444 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  N  e.  NN )
10689rpcnd 10650 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( ! `  N )  e.  CC )
107106adantr 452 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( ! `  N
)  e.  CC )
10829a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  2  e.  CC )
109105nncnd 10016 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  N  e.  CC )
110108, 109mulcld 9108 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( 2  x.  N
)  e.  CC )
111110sqrcld 12239 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( sqr `  (
2  x.  N ) )  e.  CC )
112 ere 12691 . . . . . . . . . . . . . 14  |-  _e  e.  RR
113112recni 9102 . . . . . . . . . . . . 13  |-  _e  e.  CC
114113a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  _e  e.  CC )
115 0re 9091 . . . . . . . . . . . . . 14  |-  0  e.  RR
116 epos 12806 . . . . . . . . . . . . . 14  |-  0  <  _e
117115, 116gtneii 9185 . . . . . . . . . . . . 13  |-  _e  =/=  0
118117a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  _e  =/=  0 )
119109, 114, 118divcld 9790 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( N  /  _e )  e.  CC )
120105nnnn0d 10274 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  N  e.  NN0 )
121119, 120expcld 11523 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( ( N  /  _e ) ^ N )  e.  CC )
122111, 121mulcld 9108 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( ( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) )  e.  CC )
12391rpne0d 10653 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( sqr `  ( 2  x.  N ) )  =/=  0 )
124123adantr 452 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( sqr `  (
2  x.  N ) )  =/=  0 )
125105nnne0d 10044 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  N  =/=  0 )
126109, 114, 125, 118divne0d 9806 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( N  /  _e )  =/=  0 )
127105nnzd 10374 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  N  e.  ZZ )
128119, 126, 127expne0d 11529 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( ( N  /  _e ) ^ N )  =/=  0 )
129111, 121, 124, 128mulne0d 9674 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( ( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) )  =/=  0 )
130107, 122, 129divcld 9790 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  CC )
13196, 104, 105, 130fvmptd 5810 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( A `  N
)  =  ( ( ! `  N )  /  ( ( sqr `  ( 2  x.  N
) )  x.  (
( N  /  _e ) ^ N ) ) ) )
13295, 131mpdan 650 . . . . . 6  |-  ( N  e.  NN  ->  ( A `  N )  =  ( ( ! `
 N )  / 
( ( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) ) )
133 nfcv 2572 . . . . . . . . . 10  |-  F/_ k
( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) )
134 nfcv 2572 . . . . . . . . . 10  |-  F/_ n
( ( ! `  k )  /  (
( sqr `  (
2  x.  k ) )  x.  ( ( k  /  _e ) ^ k ) ) )
135 fveq2 5728 . . . . . . . . . . 11  |-  ( n  =  k  ->  ( ! `  n )  =  ( ! `  k ) )
136 oveq2 6089 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
2  x.  n )  =  ( 2  x.  k ) )
137136fveq2d 5732 . . . . . . . . . . . 12  |-  ( n  =  k  ->  ( sqr `  ( 2  x.  n ) )  =  ( sqr `  (
2  x.  k ) ) )
138 oveq1 6088 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
n  /  _e )  =  ( k  /  _e ) )
139 id 20 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  n  =  k )
140138, 139oveq12d 6099 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
( n  /  _e ) ^ n )  =  ( ( k  /  _e ) ^ k ) )
141137, 140oveq12d 6099 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) )  =  ( ( sqr `  ( 2  x.  k
) )  x.  (
( k  /  _e ) ^ k ) ) )
142135, 141oveq12d 6099 . . . . . . . . . 10  |-  ( n  =  k  ->  (
( ! `  n
)  /  ( ( sqr `  ( 2  x.  n ) )  x.  ( ( n  /  _e ) ^
n ) ) )  =  ( ( ! `
 k )  / 
( ( sqr `  (
2  x.  k ) )  x.  ( ( k  /  _e ) ^ k ) ) ) )
143133, 134, 142cbvmpt 4299 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( ( ! `  n )  /  ( ( sqr `  ( 2  x.  n
) )  x.  (
( n  /  _e ) ^ n ) ) ) )  =  ( k  e.  NN  |->  ( ( ! `  k
)  /  ( ( sqr `  ( 2  x.  k ) )  x.  ( ( k  /  _e ) ^
k ) ) ) )
14455, 143eqtri 2456 . . . . . . . 8  |-  A  =  ( k  e.  NN  |->  ( ( ! `  k )  /  (
( sqr `  (
2  x.  k ) )  x.  ( ( k  /  _e ) ^ k ) ) ) )
145144a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  A  =  ( k  e.  NN  |->  ( ( ! `
 k )  / 
( ( sqr `  (
2  x.  k ) )  x.  ( ( k  /  _e ) ^ k ) ) ) ) )
14678fveq2d 5732 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( ! `  k )  =  ( ! `  ( N  +  1 ) ) )
14778oveq2d 6097 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( 2  x.  k )  =  ( 2  x.  ( N  +  1 ) ) )
148147fveq2d 5732 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( sqr `  (
2  x.  k ) )  =  ( sqr `  ( 2  x.  ( N  +  1 ) ) ) )
14978oveq1d 6096 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( k  /  _e )  =  (
( N  +  1 )  /  _e ) )
150149, 78oveq12d 6099 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( ( k  /  _e ) ^
k )  =  ( ( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )
151148, 150oveq12d 6099 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( ( sqr `  ( 2  x.  k
) )  x.  (
( k  /  _e ) ^ k ) )  =  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) )
152146, 151oveq12d 6099 . . . . . . 7  |-  ( ( N  e.  NN  /\  k  =  ( N  +  1 ) )  ->  ( ( ! `
 k )  / 
( ( sqr `  (
2  x.  k ) )  x.  ( ( k  /  _e ) ^ k ) ) )  =  ( ( ! `  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )
15321nnnn0d 10274 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN0 )
154 faccl 11576 . . . . . . . . 9  |-  ( ( N  +  1 )  e.  NN0  ->  ( ! `
 ( N  + 
1 ) )  e.  NN )
155 nnrp 10621 . . . . . . . . 9  |-  ( ( ! `  ( N  +  1 ) )  e.  NN  ->  ( ! `  ( N  +  1 ) )  e.  RR+ )
156153, 154, 1553syl 19 . . . . . . . 8  |-  ( N  e.  NN  ->  ( ! `  ( N  +  1 ) )  e.  RR+ )
15732, 4rpmulcld 10664 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
2  x.  ( N  +  1 ) )  e.  RR+ )
158157rpsqrcld 12214 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( sqr `  ( 2  x.  ( N  +  1 ) ) )  e.  RR+ )
1594, 12rpdivcld 10665 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  _e )  e.  RR+ )
1608peano2zd 10378 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  ZZ )
161159, 160rpexpcld 11546 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) )  e.  RR+ )
162158, 161rpmulcld 10664 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  e.  RR+ )
163156, 162rpdivcld 10665 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) )  e.  RR+ )
164145, 152, 21, 163fvmptd 5810 . . . . . 6  |-  ( N  e.  NN  ->  ( A `  ( N  +  1 ) )  =  ( ( ! `
 ( N  + 
1 ) )  / 
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )
165132, 164oveq12d 6099 . . . . 5  |-  ( N  e.  NN  ->  (
( A `  N
)  /  ( A `
 ( N  + 
1 ) ) )  =  ( ( ( ! `  N )  /  ( ( sqr `  ( 2  x.  N
) )  x.  (
( N  /  _e ) ^ N ) ) )  /  ( ( ! `  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )
166 facp1 11571 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( ! `
 ( N  + 
1 ) )  =  ( ( ! `  N )  x.  ( N  +  1 ) ) )
1672, 166syl 16 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( ! `  ( N  +  1 ) )  =  ( ( ! `
 N )  x.  ( N  +  1 ) ) )
168167oveq1d 6096 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) )  =  ( ( ( ! `  N )  x.  ( N  + 
1 ) )  / 
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )
169162rpcnd 10650 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  e.  CC )
170162rpne0d 10653 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  =/=  0 )
171106, 22, 169, 170divassd 9825 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ! `  N )  x.  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) )  =  ( ( ! `
 N )  x.  ( ( N  + 
1 )  /  (
( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )
172168, 171eqtrd 2468 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) )  =  ( ( ! `
 N )  x.  ( ( N  + 
1 )  /  (
( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )
173172oveq2d 6097 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  /  ( ( ! `  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  =  ( ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  /  ( ( ! `  N )  x.  ( ( N  +  1 )  / 
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) ) )
17494rpcnd 10650 . . . . . . 7  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) )  e.  CC )
17522, 169, 170divcld 9790 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) )  e.  CC )
176106, 175mulcld 9108 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  e.  CC )
17794rpne0d 10653 . . . . . . 7  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) )  =/=  0 )
17889rpne0d 10653 . . . . . . . 8  |-  ( N  e.  NN  ->  ( ! `  N )  =/=  0 )
17922, 169, 26, 170divne0d 9806 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) )  =/=  0 )
180106, 175, 178, 179mulne0d 9674 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  =/=  0
)
181106, 174, 176, 177, 180divdiv32d 9815 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  /  ( ( ! `  N )  x.  ( ( N  +  1 )  / 
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )  =  ( ( ( ! `
 N )  / 
( ( ! `  N )  x.  (
( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) ) ) )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) ) )
182106, 106, 175, 178, 179divdiv1d 9821 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  ( ! `  N )
)  /  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  =  ( ( ! `  N
)  /  ( ( ! `  N )  x.  ( ( N  +  1 )  / 
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) ) )
183182eqcomd 2441 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  ( ( ! `  N )  x.  ( ( N  +  1 )  / 
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )  =  ( ( ( ! `
 N )  / 
( ! `  N
) )  /  (
( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) ) ) )
184183oveq1d 6096 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  (
( ! `  N
)  x.  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )  / 
( ( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  =  ( ( ( ( ! `  N )  /  ( ! `  N )
)  /  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) ) )
185106, 178dividd 9788 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  ( ! `
 N ) )  =  1 )
186185oveq1d 6096 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  ( ! `  N )
)  /  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  =  ( 1  /  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )
187186oveq1d 6096 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( ! `
 N )  / 
( ! `  N
) )  /  (
( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) ) )  /  ( ( sqr `  ( 2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  =  ( ( 1  /  ( ( N  +  1 )  / 
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) ) )
18822, 169, 26, 170recdivd 9807 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
1  /  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  =  ( ( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) ) )
189188oveq1d 6096 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 1  /  (
( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) ) )  /  ( ( sqr `  ( 2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  =  ( ( ( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  / 
( ( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) ) )
190169, 22, 26divcld 9790 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  e.  CC )
19191rpcnd 10650 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( sqr `  ( 2  x.  N ) )  e.  CC )
19293rpcnd 10650 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( N  /  _e ) ^ N )  e.  CC )
19393rpne0d 10653 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( N  /  _e ) ^ N )  =/=  0 )
194190, 191, 192, 123, 193divdiv1d 9821 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) )  / 
( N  +  1 ) )  /  ( sqr `  ( 2  x.  N ) ) )  /  ( ( N  /  _e ) ^ N ) )  =  ( ( ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) )  / 
( N  +  1 ) )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) ) )
195169, 22, 191, 26, 123divdiv32d 9815 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  / 
( sqr `  (
2  x.  N ) ) )  =  ( ( ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( sqr `  (
2  x.  N ) ) )  /  ( N  +  1 ) ) )
196158rpcnd 10650 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  ( sqr `  ( 2  x.  ( N  +  1 ) ) )  e.  CC )
197161rpcnd 10650 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) )  e.  CC )
198196, 197, 191, 123div23d 9827 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( sqr `  (
2  x.  N ) ) )  =  ( ( ( sqr `  (
2  x.  ( N  +  1 ) ) )  /  ( sqr `  ( 2  x.  N
) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  +  1 ) ) ) )
19932rpred 10648 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  2  e.  RR )
20032rpge0d 10652 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  0  <_  2 )
20121nnred 10015 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR )
202153nn0ge0d 10277 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  0  <_  ( N  +  1 ) )
203199, 200, 201, 202sqrmuld 12227 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( sqr `  ( 2  x.  ( N  +  1 ) ) )  =  ( ( sqr `  2
)  x.  ( sqr `  ( N  +  1 ) ) ) )
204199, 200, 1, 3sqrmuld 12227 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( sqr `  ( 2  x.  N ) )  =  ( ( sqr `  2
)  x.  ( sqr `  N ) ) )
205203, 204oveq12d 6099 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  ( N  +  1 ) ) )  /  ( sqr `  ( 2  x.  N
) ) )  =  ( ( ( sqr `  2 )  x.  ( sqr `  ( N  +  1 ) ) )  /  (
( sqr `  2
)  x.  ( sqr `  N ) ) ) )
20630sqrcld 12239 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( sqr `  2 )  e.  CC )
20722sqrcld 12239 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( sqr `  ( N  + 
1 ) )  e.  CC )
20823sqrcld 12239 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( sqr `  N )  e.  CC )
20932rpsqrcld 12214 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  ( sqr `  2 )  e.  RR+ )
210209rpne0d 10653 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( sqr `  2 )  =/=  0 )
2115rpsqrcld 12214 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  ( sqr `  N )  e.  RR+ )
212211rpne0d 10653 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( sqr `  N )  =/=  0 )
213206, 206, 207, 208, 210, 212divmuldivd 9831 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  (
( ( sqr `  2
)  /  ( sqr `  2 ) )  x.  ( ( sqr `  ( N  +  1 ) )  /  ( sqr `  N ) ) )  =  ( ( ( sqr `  2
)  x.  ( sqr `  ( N  +  1 ) ) )  / 
( ( sqr `  2
)  x.  ( sqr `  N ) ) ) )
214206, 210dividd 9788 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
( sqr `  2
)  /  ( sqr `  2 ) )  =  1 )
215201, 202, 5sqrdivd 12226 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  ( sqr `  ( ( N  +  1 )  /  N ) )  =  ( ( sqr `  ( N  +  1 ) )  /  ( sqr `  N ) ) )
216215eqcomd 2441 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
( sqr `  ( N  +  1 ) )  /  ( sqr `  N ) )  =  ( sqr `  (
( N  +  1 )  /  N ) ) )
217214, 216oveq12d 6099 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  (
( ( sqr `  2
)  /  ( sqr `  2 ) )  x.  ( ( sqr `  ( N  +  1 ) )  /  ( sqr `  N ) ) )  =  ( 1  x.  ( sqr `  (
( N  +  1 )  /  N ) ) ) )
218205, 213, 2173eqtr2d 2474 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  ( N  +  1 ) ) )  /  ( sqr `  ( 2  x.  N
) ) )  =  ( 1  x.  ( sqr `  ( ( N  +  1 )  /  N ) ) ) )
219218oveq1d 6096 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  /  ( sqr `  ( 2  x.  N
) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  +  1 ) ) )  =  ( ( 1  x.  ( sqr `  ( ( N  + 
1 )  /  N
) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  +  1 ) ) ) )
22025sqrcld 12239 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  ( sqr `  ( ( N  +  1 )  /  N ) )  e.  CC )
221220mulid2d 9106 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
1  x.  ( sqr `  ( ( N  + 
1 )  /  N
) ) )  =  ( sqr `  (
( N  +  1 )  /  N ) ) )
222221oveq1d 6096 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( 1  x.  ( sqr `  ( ( N  +  1 )  /  N ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) )  =  ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) )
223198, 219, 2223eqtrd 2472 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( sqr `  (
2  x.  ( N  +  1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( sqr `  (
2  x.  N ) ) )  =  ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) ) )
224223oveq1d 6096 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( sqr `  (
2  x.  N ) ) )  /  ( N  +  1 ) )  =  ( ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) ) )
225195, 224eqtrd 2468 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  / 
( sqr `  (
2  x.  N ) ) )  =  ( ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) ) )
226225oveq1d 6096 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) )  / 
( N  +  1 ) )  /  ( sqr `  ( 2  x.  N ) ) )  /  ( ( N  /  _e ) ^ N ) )  =  ( ( ( ( sqr `  ( ( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) )  / 
( N  +  1 ) )  /  (
( N  /  _e ) ^ N ) ) )
227194, 226eqtr3d 2470 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  / 
( ( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  =  ( ( ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  / 
( ( N  /  _e ) ^ N ) ) )
228220, 197mulcld 9108 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  e.  CC )
229228, 22, 192, 26, 193divdiv32d 9815 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  / 
( ( N  /  _e ) ^ N ) )  =  ( ( ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( ( N  /  _e ) ^ N ) )  / 
( N  +  1 ) ) )
230220, 197, 192, 193divassd 9825 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( ( N  /  _e ) ^ N ) )  =  ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) )  / 
( ( N  /  _e ) ^ N ) ) ) )
23112rpcnd 10650 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  _e  e.  CC )
23212rpne0d 10653 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  _e  =/=  0 )
23322, 231, 232, 153expdivd 11537 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) )  =  ( ( ( N  +  1 ) ^
( N  +  1 ) )  /  (
_e ^ ( N  +  1 ) ) ) )
23423, 231, 232, 2expdivd 11537 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( N  /  _e ) ^ N )  =  ( ( N ^ N )  /  (
_e ^ N ) ) )
235233, 234oveq12d 6099 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  /  _e ) ^ ( N  +  1 ) )  /  ( ( N  /  _e ) ^ N ) )  =  ( ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( _e ^ ( N  +  1 ) ) )  /  (
( N ^ N
)  /  ( _e
^ N ) ) ) )
236235oveq2d 6097 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) )  / 
( ( N  /  _e ) ^ N ) ) )  =  ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( _e
^ ( N  + 
1 ) ) )  /  ( ( N ^ N )  / 
( _e ^ N
) ) ) ) )
23722, 153expcld 11523 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( N  +  1 ) ^ ( N  +  1 ) )  e.  CC )
238231, 153expcld 11523 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
_e ^ ( N  +  1 ) )  e.  CC )
23923, 2expcld 11523 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  ( N ^ N )  e.  CC )
240231, 2expcld 11523 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
_e ^ N )  e.  CC )
241231, 232, 160expne0d 11529 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
_e ^ ( N  +  1 ) )  =/=  0 )
242231, 232, 8expne0d 11529 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
_e ^ N )  =/=  0 )
24323, 24, 8expne0d 11529 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  ( N ^ N )  =/=  0 )
244237, 238, 239, 240, 241, 242, 243divdivdivd 9837 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^
( N  +  1 ) )  /  (
_e ^ ( N  +  1 ) ) )  /  ( ( N ^ N )  /  ( _e ^ N ) ) )  =  ( ( ( ( N  +  1 ) ^ ( N  +  1 ) )  x.  ( _e ^ N ) )  / 
( ( _e ^
( N  +  1 ) )  x.  ( N ^ N ) ) ) )
245237, 240mulcomd 9109 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( ( N  + 
1 ) ^ ( N  +  1 ) )  x.  ( _e
^ N ) )  =  ( ( _e
^ N )  x.  ( ( N  + 
1 ) ^ ( N  +  1 ) ) ) )
246245oveq1d 6096 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^
( N  +  1 ) )  x.  (
_e ^ N ) )  /  ( ( _e ^ ( N  +  1 ) )  x.  ( N ^ N ) ) )  =  ( ( ( _e ^ N )  x.  ( ( N  +  1 ) ^
( N  +  1 ) ) )  / 
( ( _e ^
( N  +  1 ) )  x.  ( N ^ N ) ) ) )
247240, 238, 237, 239, 241, 243divmuldivd 9831 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( ( _e ^ N )  /  (
_e ^ ( N  +  1 ) ) )  x.  ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  =  ( ( ( _e ^ N )  x.  ( ( N  +  1 ) ^
( N  +  1 ) ) )  / 
( ( _e ^
( N  +  1 ) )  x.  ( N ^ N ) ) ) )
248231, 2expp1d 11524 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  (
_e ^ ( N  +  1 ) )  =  ( ( _e
^ N )  x.  _e ) )
249248oveq2d 6097 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
( _e ^ N
)  /  ( _e
^ ( N  + 
1 ) ) )  =  ( ( _e
^ N )  / 
( ( _e ^ N )  x.  _e ) ) )
250240, 240, 231, 242, 232divdiv1d 9821 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
( ( _e ^ N )  /  (
_e ^ N ) )  /  _e )  =  ( ( _e
^ N )  / 
( ( _e ^ N )  x.  _e ) ) )
251240, 242dividd 9788 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  (
( _e ^ N
)  /  ( _e
^ N ) )  =  1 )
252251oveq1d 6096 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  (
( ( _e ^ N )  /  (
_e ^ N ) )  /  _e )  =  ( 1  /  _e ) )
253249, 250, 2523eqtr2d 2474 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  (
( _e ^ N
)  /  ( _e
^ ( N  + 
1 ) ) )  =  ( 1  /  _e ) )
254253oveq1d 6096 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( ( _e ^ N )  /  (
_e ^ ( N  +  1 ) ) )  x.  ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  =  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) ) ) )
255247, 254eqtr3d 2470 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( _e ^ N )  x.  (
( N  +  1 ) ^ ( N  +  1 ) ) )  /  ( ( _e ^ ( N  +  1 ) )  x.  ( N ^ N ) ) )  =  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) ) ) )
256244, 246, 2553eqtrd 2472 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^
( N  +  1 ) )  /  (
_e ^ ( N  +  1 ) ) )  /  ( ( N ^ N )  /  ( _e ^ N ) ) )  =  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) ) ) )
257256oveq2d 6097 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( _e
^ ( N  + 
1 ) ) )  /  ( ( N ^ N )  / 
( _e ^ N
) ) ) )  =  ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( 1  /  _e )  x.  ( (
( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) ) ) )
258230, 236, 2573eqtrd 2472 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( ( N  /  _e ) ^ N ) )  =  ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) ) ) )
259258oveq1d 6096 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( ( N  /  _e ) ^ N ) )  / 
( N  +  1 ) )  =  ( ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) ) )  /  ( N  + 
1 ) ) )
260237, 239, 243divcld 9790 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  e.  CC )
26137, 231, 260, 232div32d 9813 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( 1  /  _e )  x.  ( (
( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  =  ( 1  x.  ( ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) )  /  _e ) ) )
262260, 231, 232divcld 9790 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) )  /  _e )  e.  CC )
263262mulid2d 9106 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
1  x.  ( ( ( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  /  _e ) )  =  ( ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  /  _e ) )
264261, 263eqtrd 2468 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 1  /  _e )  x.  ( (
( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  =  ( ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  /  _e ) )
265264oveq2d 6097 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  x.  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) ) ) )  =  ( ( ( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  x.  ( ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  /  _e ) ) )
266231, 232reccld 9783 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
1  /  _e )  e.  CC )
267266, 260mulcld 9108 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 1  /  _e )  x.  ( (
( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  e.  CC )
268220, 267, 22, 26div23d 9827 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) ) )  /  ( N  + 
1 ) )  =  ( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  /  ( N  +  1 ) )  x.  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) ) ) )
269220, 22, 26divcld 9790 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  e.  CC )
270269, 260, 231, 232divassd 9825 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  /  _e )  =  ( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  /  ( N  +  1 ) )  x.  ( ( ( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  /  _e ) ) )
271265, 268, 2703eqtr4d 2478 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( 1  /  _e )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) ) )  /  ( N  + 
1 ) )  =  ( ( ( ( sqr `  ( ( N  +  1 )  /  N ) )  /  ( N  + 
1 ) )  x.  ( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) ) )  /  _e ) )
272229, 259, 2713eqtrd 2472 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) )  /  ( N  + 
1 ) )  / 
( ( N  /  _e ) ^ N ) )  =  ( ( ( ( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) )  /  _e ) )
273189, 227, 2723eqtrd 2472 . . . . . . 7  |-  ( N  e.  NN  ->  (
( 1  /  (
( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  + 
1 ) ) )  x.  ( ( ( N  +  1 )  /  _e ) ^
( N  +  1 ) ) ) ) )  /  ( ( sqr `  ( 2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  =  ( ( ( ( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) )  /  _e ) )
274184, 187, 2733eqtrd 2472 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  (
( ! `  N
)  x.  ( ( N  +  1 )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) ) )  / 
( ( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  =  ( ( ( ( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) )  /  _e ) )
275173, 181, 2743eqtrd 2472 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  /  ( ( ! `  ( N  +  1 ) )  /  ( ( sqr `  ( 2  x.  ( N  +  1 ) ) )  x.  (
( ( N  + 
1 )  /  _e ) ^ ( N  + 
1 ) ) ) ) )  =  ( ( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  /  _e ) )
276220, 22, 260, 26div32d 9813 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) )  =  ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  /  ( N  + 
1 ) ) ) )
27722, 2expp1d 11524 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( N  +  1 ) ^ ( N  +  1 ) )  =  ( ( ( N  +  1 ) ^ N )  x.  ( N  +  1 ) ) )
278277oveq1d 6096 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( N  +  1 ) )  =  ( ( ( ( N  +  1 ) ^ N )  x.  ( N  + 
1 ) )  / 
( N  +  1 ) ) )
27922, 2expcld 11523 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( N  +  1 ) ^ N )  e.  CC )
280279, 22, 26divcan4d 9796 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^ N )  x.  ( N  +  1 ) )  /  ( N  +  1 ) )  =  ( ( N  +  1 ) ^ N ) )
281278, 280eqtrd 2468 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( N  +  1 ) )  =  ( ( N  +  1 ) ^ N ) )
282281oveq1d 6096 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N  +  1 ) )  /  ( N ^ N ) )  =  ( ( ( N  +  1 ) ^ N )  / 
( N ^ N
) ) )
283237, 239, 22, 243, 26divdiv32d 9815 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) )  /  ( N  + 
1 ) )  =  ( ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N  +  1 ) )  /  ( N ^ N ) ) )
28422, 23, 24, 2expdivd 11537 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  /  N
) ^ N )  =  ( ( ( N  +  1 ) ^ N )  / 
( N ^ N
) ) )
285282, 283, 2843eqtr4d 2478 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 ) ^
( N  +  1 ) )  /  ( N ^ N ) )  /  ( N  + 
1 ) )  =  ( ( ( N  +  1 )  /  N ) ^ N
) )
286285oveq2d 6097 . . . . . . 7  |-  ( N  e.  NN  ->  (
( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( ( N  + 
1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) )  /  ( N  + 
1 ) ) )  =  ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  N
) ^ N ) ) )
287276, 286eqtrd 2468 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( sqr `  (
( N  +  1 )  /  N ) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  + 
1 ) )  / 
( N ^ N
) ) )  =  ( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) ) )
288287oveq1d 6096 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  /  ( N  +  1 ) )  x.  ( ( ( N  +  1 ) ^ ( N  +  1 ) )  /  ( N ^ N ) ) )  /  _e )  =  ( ( ( sqr `  ( ( N  + 
1 )  /  N
) )  x.  (
( ( N  + 
1 )  /  N
) ^ N ) )  /  _e ) )
289165, 275, 2883eqtrd 2472 . . . 4  |-  ( N  e.  NN  ->  (
( A `  N
)  /  ( A `
 ( N  + 
1 ) ) )  =  ( ( ( sqr `  ( ( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) )  /  _e ) )
290289fveq2d 5732 . . 3  |-  ( N  e.  NN  ->  ( log `  ( ( A `
 N )  / 
( A `  ( N  +  1 ) ) ) )  =  ( log `  (
( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) )  /  _e ) ) )
29185, 86, 2903eqtr2d 2474 . 2  |-  ( N  e.  NN  ->  (
( B `  N
)  -  ( B `
 ( N  + 
1 ) ) )  =  ( log `  (
( ( sqr `  (
( N  +  1 )  /  N ) )  x.  ( ( ( N  +  1 )  /  N ) ^ N ) )  /  _e ) ) )
29237, 45addcld 9107 . . . . . 6  |-  ( N  e.  NN  ->  (
1  +  ( 2  x.  N ) )  e.  CC )
293292halfcld 10212 . . . . 5  |-  ( N  e.  NN  ->  (
( 1  +  ( 2  x.  N ) )  /  2 )  e.  CC )
294293, 28mulcld 9108 . . . 4  |-  ( N  e.  NN  ->  (
( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  e.  CC )
295294, 37subcld 9411 . . 3  |-  ( N  e.  NN  ->  (
( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )
296 stirlinglem4.3 . . . . 5  |-  J  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 ) )
297296a1i 11 . . . 4  |-  ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  ->  J  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  / 
2 )  x.  ( log `  ( ( n  +  1 )  /  n ) ) )  -  1 ) ) )
298 simpr 448 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  n  =  N )
299298oveq2d 6097 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( 2  x.  n )  =  ( 2  x.  N
) )
300299oveq2d 6097 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( 1  +  ( 2  x.  n ) )  =  ( 1  +  ( 2  x.  N ) ) )
301300oveq1d 6096 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( (
1  +  ( 2  x.  n ) )  /  2 )  =  ( ( 1  +  ( 2  x.  N
) )  /  2
) )
302298oveq1d 6096 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( n  +  1 )  =  ( N  +  1 ) )
303302, 298oveq12d 6099 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( (
n  +  1 )  /  n )  =  ( ( N  + 
1 )  /  N
) )
304303fveq2d 5732 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( log `  ( ( n  + 
1 )  /  n
) )  =  ( log `  ( ( N  +  1 )  /  N ) ) )
305301, 304oveq12d 6099 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( (
( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  =  ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) ) )
306305oveq1d 6096 . . . 4  |-  ( ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  /\  n  =  N )  ->  ( (
( ( 1  +  ( 2  x.  n
) )  /  2
)  x.  ( log `  ( ( n  + 
1 )  /  n
) ) )  - 
1 )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  -  1 ) )
307 simpl 444 . . . 4  |-  ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  ->  N  e.  NN )
308 simpr 448 . . . 4  |-  ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  ->  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )
309297, 306, 307, 308fvmptd 5810 . . 3  |-  ( ( N  e.  NN  /\  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )  ->  ( J `  N )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  -  1 ) )
310295, 309mpdan 650 . 2  |-  ( N  e.  NN  ->  ( J `  N )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 ) )
31154, 291, 3103eqtr4d 2478 1  |-  ( N  e.  NN  ->  (
( B `  N
)  -  ( B `
 ( N  + 
1 ) ) )  =  ( J `  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599    e. cmpt 4266   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    - cmin 9291    / cdiv 9677   NNcn 10000   2c2 10049   NN0cn0 10221   ZZcz 10282   RR+crp 10612   ^cexp 11382   !cfa 11566   sqrcsqr 12038   _eceu 12665   logclog 20452
This theorem is referenced by:  stirlinglem9  27807
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ioc 10921  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-fac 11567  df-bc 11594  df-hash 11619  df-shft 11882  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-limsup 12265  df-clim 12282  df-rlim 12283  df-sum 12480  df-ef 12670  df-e 12671  df-sin 12672  df-cos 12673  df-pi 12675  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-limc 19753  df-dv 19754  df-log 20454  df-cxp 20455
  Copyright terms: Public domain W3C validator