Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem6 Structured version   Unicode version

Theorem stirlinglem6 27818
Description: A series that converges to log (N+1)/N (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
stirlinglem6.1  |-  H  =  ( j  e.  NN0  |->  ( 2  x.  (
( 1  /  (
( 2  x.  j
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  j )  +  1 ) ) ) ) )
Assertion
Ref Expression
stirlinglem6  |-  ( N  e.  NN  ->  seq  0 (  +  ,  H )  ~~>  ( log `  ( ( N  + 
1 )  /  N
) ) )
Distinct variable group:    j, N
Allowed substitution hint:    H( j)

Proof of Theorem stirlinglem6
StepHypRef Expression
1 eqid 2438 . . 3  |-  ( j  e.  NN  |->  ( (
-u 1 ^ (
j  -  1 ) )  x.  ( ( ( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ j )  /  j ) ) )  =  ( j  e.  NN  |->  ( (
-u 1 ^ (
j  -  1 ) )  x.  ( ( ( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ j )  /  j ) ) )
2 eqid 2438 . . 3  |-  ( j  e.  NN  |->  ( ( ( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ j )  /  j ) )  =  ( j  e.  NN  |->  ( ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ j )  / 
j ) )
3 eqid 2438 . . 3  |-  ( j  e.  NN  |->  ( ( ( -u 1 ^ ( j  -  1 ) )  x.  (
( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ j
)  /  j ) )  +  ( ( ( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ j )  /  j ) ) )  =  ( j  e.  NN  |->  ( ( ( -u 1 ^ ( j  -  1 ) )  x.  (
( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ j
)  /  j ) )  +  ( ( ( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ j )  /  j ) ) )
4 stirlinglem6.1 . . 3  |-  H  =  ( j  e.  NN0  |->  ( 2  x.  (
( 1  /  (
( 2  x.  j
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  j )  +  1 ) ) ) ) )
5 eqid 2438 . . 3  |-  ( j  e.  NN0  |->  ( ( 2  x.  j )  +  1 ) )  =  ( j  e. 
NN0  |->  ( ( 2  x.  j )  +  1 ) )
6 2re 10074 . . . . . . 7  |-  2  e.  RR
76a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  2  e.  RR )
8 nnre 10012 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  RR )
97, 8remulcld 9121 . . . . 5  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  RR )
10 0re 9096 . . . . . . . 8  |-  0  e.  RR
11 2pos 10087 . . . . . . . 8  |-  0  <  2
1210, 6, 11ltleii 9201 . . . . . . 7  |-  0  <_  2
1312a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  0  <_  2 )
1410a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  0  e.  RR )
15 nngt0 10034 . . . . . . 7  |-  ( N  e.  NN  ->  0  <  N )
1614, 8, 15ltled 9226 . . . . . 6  |-  ( N  e.  NN  ->  0  <_  N )
177, 8, 13, 16mulge0d 9608 . . . . 5  |-  ( N  e.  NN  ->  0  <_  ( 2  x.  N
) )
189, 17ge0p1rpd 10679 . . . 4  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  e.  RR+ )
1918rpreccld 10663 . . 3  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  N )  +  1 ) )  e.  RR+ )
20 1re 9095 . . . . . . 7  |-  1  e.  RR
2120a1i 11 . . . . . 6  |-  ( N  e.  NN  ->  1  e.  RR )
2221renegcld 9469 . . . . 5  |-  ( N  e.  NN  ->  -u 1  e.  RR )
2319rpred 10653 . . . . 5  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  N )  +  1 ) )  e.  RR )
24 0lt1 9555 . . . . . . 7  |-  0  <  1
25 lt0neg2 9540 . . . . . . . 8  |-  ( 1  e.  RR  ->  (
0  <  1  <->  -u 1  <  0 ) )
2620, 25ax-mp 5 . . . . . . 7  |-  ( 0  <  1  <->  -u 1  <  0 )
2724, 26mpbi 201 . . . . . 6  |-  -u 1  <  0
2827a1i 11 . . . . 5  |-  ( N  e.  NN  ->  -u 1  <  0 )
2919rpgt0d 10656 . . . . 5  |-  ( N  e.  NN  ->  0  <  ( 1  /  (
( 2  x.  N
)  +  1 ) ) )
3022, 14, 23, 28, 29lttrd 9236 . . . 4  |-  ( N  e.  NN  ->  -u 1  <  ( 1  /  (
( 2  x.  N
)  +  1 ) ) )
31 1rp 10621 . . . . . 6  |-  1  e.  RR+
3231a1i 11 . . . . 5  |-  ( N  e.  NN  ->  1  e.  RR+ )
33 ax-1cn 9053 . . . . . . . 8  |-  1  e.  CC
3433a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  1  e.  CC )
3534div1d 9787 . . . . . 6  |-  ( N  e.  NN  ->  (
1  /  1 )  =  1 )
36 2rp 10622 . . . . . . . . 9  |-  2  e.  RR+
3736a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  2  e.  RR+ )
38 nnrp 10626 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  RR+ )
3937, 38rpmulcld 10669 . . . . . . 7  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  RR+ )
4021, 39ltaddrp2d 10683 . . . . . 6  |-  ( N  e.  NN  ->  1  <  ( ( 2  x.  N )  +  1 ) )
4135, 40eqbrtrd 4235 . . . . 5  |-  ( N  e.  NN  ->  (
1  /  1 )  <  ( ( 2  x.  N )  +  1 ) )
4232, 18, 41ltrec1d 10673 . . . 4  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  N )  +  1 ) )  <  1 )
4323, 21absltd 12237 . . . 4  |-  ( N  e.  NN  ->  (
( abs `  (
1  /  ( ( 2  x.  N )  +  1 ) ) )  <  1  <->  ( -u 1  <  ( 1  /  ( ( 2  x.  N )  +  1 ) )  /\  ( 1  /  (
( 2  x.  N
)  +  1 ) )  <  1 ) ) )
4430, 42, 43mpbir2and 890 . . 3  |-  ( N  e.  NN  ->  ( abs `  ( 1  / 
( ( 2  x.  N )  +  1 ) ) )  <  1 )
451, 2, 3, 4, 5, 19, 44stirlinglem5 27817 . 2  |-  ( N  e.  NN  ->  seq  0 (  +  ,  H )  ~~>  ( log `  ( ( 1  +  ( 1  /  (
( 2  x.  N
)  +  1 ) ) )  /  (
1  -  ( 1  /  ( ( 2  x.  N )  +  1 ) ) ) ) ) )
46 2cn 10075 . . . . . . . . . . 11  |-  2  e.  CC
4746a1i 11 . . . . . . . . . 10  |-  ( N  e.  NN  ->  2  e.  CC )
48 nncn 10013 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  e.  CC )
4947, 48mulcld 9113 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  CC )
5049, 34addcld 9112 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  e.  CC )
519, 21readdcld 9120 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  e.  RR )
5211a1i 11 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  0  <  2 )
537, 8, 52, 15mulgt0d 9230 . . . . . . . . . 10  |-  ( N  e.  NN  ->  0  <  ( 2  x.  N
) )
549ltp1d 9946 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
2  x.  N )  <  ( ( 2  x.  N )  +  1 ) )
5514, 9, 51, 53, 54lttrd 9236 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <  ( ( 2  x.  N )  +  1 ) )
5655gt0ne0d 9596 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  =/=  0 )
5750, 56dividd 9793 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  1 )
5857eqcomd 2443 . . . . . 6  |-  ( N  e.  NN  ->  1  =  ( ( ( 2  x.  N )  +  1 )  / 
( ( 2  x.  N )  +  1 ) ) )
5958oveq1d 6099 . . . . 5  |-  ( N  e.  NN  ->  (
1  +  ( 1  /  ( ( 2  x.  N )  +  1 ) ) )  =  ( ( ( ( 2  x.  N
)  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  +  ( 1  /  (
( 2  x.  N
)  +  1 ) ) ) )
6058oveq1d 6099 . . . . 5  |-  ( N  e.  NN  ->  (
1  -  ( 1  /  ( ( 2  x.  N )  +  1 ) ) )  =  ( ( ( ( 2  x.  N
)  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  -  ( 1  /  (
( 2  x.  N
)  +  1 ) ) ) )
6159, 60oveq12d 6102 . . . 4  |-  ( N  e.  NN  ->  (
( 1  +  ( 1  /  ( ( 2  x.  N )  +  1 ) ) )  /  ( 1  -  ( 1  / 
( ( 2  x.  N )  +  1 ) ) ) )  =  ( ( ( ( ( 2  x.  N )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  +  ( 1  / 
( ( 2  x.  N )  +  1 ) ) )  / 
( ( ( ( 2  x.  N )  +  1 )  / 
( ( 2  x.  N )  +  1 ) )  -  (
1  /  ( ( 2  x.  N )  +  1 ) ) ) ) )
6250, 34, 50, 56divdird 9833 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  ( ( ( ( 2  x.  N
)  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  +  ( 1  /  (
( 2  x.  N
)  +  1 ) ) ) )
6362eqcomd 2443 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  /  (
( 2  x.  N
)  +  1 ) )  +  ( 1  /  ( ( 2  x.  N )  +  1 ) ) )  =  ( ( ( ( 2  x.  N
)  +  1 )  +  1 )  / 
( ( 2  x.  N )  +  1 ) ) )
6450, 34, 50, 56divsubdird 9834 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  -  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  ( ( ( ( 2  x.  N
)  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  -  ( 1  /  (
( 2  x.  N
)  +  1 ) ) ) )
6564eqcomd 2443 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  /  (
( 2  x.  N
)  +  1 ) )  -  ( 1  /  ( ( 2  x.  N )  +  1 ) ) )  =  ( ( ( ( 2  x.  N
)  +  1 )  -  1 )  / 
( ( 2  x.  N )  +  1 ) ) )
6663, 65oveq12d 6102 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 )  / 
( ( 2  x.  N )  +  1 ) )  +  ( 1  /  ( ( 2  x.  N )  +  1 ) ) )  /  ( ( ( ( 2  x.  N )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  -  ( 1  / 
( ( 2  x.  N )  +  1 ) ) ) )  =  ( ( ( ( ( 2  x.  N )  +  1 )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  / 
( ( ( ( 2  x.  N )  +  1 )  - 
1 )  /  (
( 2  x.  N
)  +  1 ) ) ) )
6749, 34, 34addassd 9115 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 )  +  1 )  =  ( ( 2  x.  N )  +  ( 1  +  1 ) ) )
68 1p1e2 10099 . . . . . . . . . 10  |-  ( 1  +  1 )  =  2
6968a1i 11 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
1  +  1 )  =  2 )
7069oveq2d 6100 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  ( 1  +  1 ) )  =  ( ( 2  x.  N )  +  2 ) )
7147mulid1d 9110 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
2  x.  1 )  =  2 )
7271eqcomd 2443 . . . . . . . . . 10  |-  ( N  e.  NN  ->  2  =  ( 2  x.  1 ) )
7372oveq2d 6100 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  2 )  =  ( ( 2  x.  N )  +  ( 2  x.  1 ) ) )
7447, 48, 34adddid 9117 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
2  x.  ( N  +  1 ) )  =  ( ( 2  x.  N )  +  ( 2  x.  1 ) ) )
7573, 74eqtr4d 2473 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  2 )  =  ( 2  x.  ( N  +  1 ) ) )
7667, 70, 753eqtrd 2474 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 )  +  1 )  =  ( 2  x.  ( N  +  1 ) ) )
7776oveq1d 6099 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  ( ( 2  x.  ( N  + 
1 ) )  / 
( ( 2  x.  N )  +  1 ) ) )
7849, 34pncand 9417 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 )  -  1 )  =  ( 2  x.  N ) )
7978oveq1d 6099 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  -  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  ( ( 2  x.  N )  / 
( ( 2  x.  N )  +  1 ) ) )
8077, 79oveq12d 6102 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 )  +  1 )  /  (
( 2  x.  N
)  +  1 ) )  /  ( ( ( ( 2  x.  N )  +  1 )  -  1 )  /  ( ( 2  x.  N )  +  1 ) ) )  =  ( ( ( 2  x.  ( N  +  1 ) )  /  ( ( 2  x.  N )  +  1 ) )  / 
( ( 2  x.  N )  /  (
( 2  x.  N
)  +  1 ) ) ) )
8166, 80eqtrd 2470 . . . 4  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 )  / 
( ( 2  x.  N )  +  1 ) )  +  ( 1  /  ( ( 2  x.  N )  +  1 ) ) )  /  ( ( ( ( 2  x.  N )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  -  ( 1  / 
( ( 2  x.  N )  +  1 ) ) ) )  =  ( ( ( 2  x.  ( N  +  1 ) )  /  ( ( 2  x.  N )  +  1 ) )  / 
( ( 2  x.  N )  /  (
( 2  x.  N
)  +  1 ) ) ) )
8248, 34addcld 9112 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  CC )
8347, 82mulcld 9113 . . . . . 6  |-  ( N  e.  NN  ->  (
2  x.  ( N  +  1 ) )  e.  CC )
8453gt0ne0d 9596 . . . . . 6  |-  ( N  e.  NN  ->  (
2  x.  N )  =/=  0 )
8583, 49, 50, 84, 56divcan7d 9823 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 2  x.  ( N  +  1 ) )  /  (
( 2  x.  N
)  +  1 ) )  /  ( ( 2  x.  N )  /  ( ( 2  x.  N )  +  1 ) ) )  =  ( ( 2  x.  ( N  + 
1 ) )  / 
( 2  x.  N
) ) )
8652gt0ne0d 9596 . . . . . . 7  |-  ( N  e.  NN  ->  2  =/=  0 )
8715gt0ne0d 9596 . . . . . . 7  |-  ( N  e.  NN  ->  N  =/=  0 )
8847, 47, 82, 48, 86, 87divmuldivd 9836 . . . . . 6  |-  ( N  e.  NN  ->  (
( 2  /  2
)  x.  ( ( N  +  1 )  /  N ) )  =  ( ( 2  x.  ( N  + 
1 ) )  / 
( 2  x.  N
) ) )
8988eqcomd 2443 . . . . 5  |-  ( N  e.  NN  ->  (
( 2  x.  ( N  +  1 ) )  /  ( 2  x.  N ) )  =  ( ( 2  /  2 )  x.  ( ( N  + 
1 )  /  N
) ) )
9047, 86dividd 9793 . . . . . . 7  |-  ( N  e.  NN  ->  (
2  /  2 )  =  1 )
9190oveq1d 6099 . . . . . 6  |-  ( N  e.  NN  ->  (
( 2  /  2
)  x.  ( ( N  +  1 )  /  N ) )  =  ( 1  x.  ( ( N  + 
1 )  /  N
) ) )
9282, 48, 87divcld 9795 . . . . . . 7  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  N )  e.  CC )
9392mulid2d 9111 . . . . . 6  |-  ( N  e.  NN  ->  (
1  x.  ( ( N  +  1 )  /  N ) )  =  ( ( N  +  1 )  /  N ) )
9491, 93eqtrd 2470 . . . . 5  |-  ( N  e.  NN  ->  (
( 2  /  2
)  x.  ( ( N  +  1 )  /  N ) )  =  ( ( N  +  1 )  /  N ) )
9585, 89, 943eqtrd 2474 . . . 4  |-  ( N  e.  NN  ->  (
( ( 2  x.  ( N  +  1 ) )  /  (
( 2  x.  N
)  +  1 ) )  /  ( ( 2  x.  N )  /  ( ( 2  x.  N )  +  1 ) ) )  =  ( ( N  +  1 )  /  N ) )
9661, 81, 953eqtrd 2474 . . 3  |-  ( N  e.  NN  ->  (
( 1  +  ( 1  /  ( ( 2  x.  N )  +  1 ) ) )  /  ( 1  -  ( 1  / 
( ( 2  x.  N )  +  1 ) ) ) )  =  ( ( N  +  1 )  /  N ) )
9796fveq2d 5735 . 2  |-  ( N  e.  NN  ->  ( log `  ( ( 1  +  ( 1  / 
( ( 2  x.  N )  +  1 ) ) )  / 
( 1  -  (
1  /  ( ( 2  x.  N )  +  1 ) ) ) ) )  =  ( log `  (
( N  +  1 )  /  N ) ) )
9845, 97breqtrd 4239 1  |-  ( N  e.  NN  ->  seq  0 (  +  ,  H )  ~~>  ( log `  ( ( N  + 
1 )  /  N
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    = wceq 1653    e. wcel 1726   class class class wbr 4215    e. cmpt 4269   ` cfv 5457  (class class class)co 6084   CCcc 8993   RRcr 8994   0cc0 8995   1c1 8996    + caddc 8998    x. cmul 9000    < clt 9125    <_ cle 9126    - cmin 9296   -ucneg 9297    / cdiv 9682   NNcn 10005   2c2 10054   NN0cn0 10226   RR+crp 10617    seq cseq 11328   ^cexp 11387   abscabs 12044    ~~> cli 12283   logclog 20457
This theorem is referenced by:  stirlinglem7  27819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073  ax-addf 9074  ax-mulf 9075
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-2o 6728  df-oadd 6731  df-er 6908  df-map 7023  df-pm 7024  df-ixp 7067  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-fi 7419  df-sup 7449  df-oi 7482  df-card 7831  df-cda 8053  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-q 10580  df-rp 10618  df-xneg 10715  df-xadd 10716  df-xmul 10717  df-ioo 10925  df-ioc 10926  df-ico 10927  df-icc 10928  df-fz 11049  df-fzo 11141  df-fl 11207  df-mod 11256  df-seq 11329  df-exp 11388  df-fac 11572  df-bc 11599  df-hash 11624  df-shft 11887  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-limsup 12270  df-clim 12287  df-rlim 12288  df-sum 12485  df-ef 12675  df-sin 12677  df-cos 12678  df-tan 12679  df-pi 12680  df-dvds 12858  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-starv 13549  df-sca 13550  df-vsca 13551  df-tset 13553  df-ple 13554  df-ds 13556  df-unif 13557  df-hom 13558  df-cco 13559  df-rest 13655  df-topn 13656  df-topgen 13672  df-pt 13673  df-prds 13676  df-xrs 13731  df-0g 13732  df-gsum 13733  df-qtop 13738  df-imas 13739  df-xps 13741  df-mre 13816  df-mrc 13817  df-acs 13819  df-mnd 14695  df-submnd 14744  df-mulg 14820  df-cntz 15121  df-cmn 15419  df-psmet 16699  df-xmet 16700  df-met 16701  df-bl 16702  df-mopn 16703  df-fbas 16704  df-fg 16705  df-cnfld 16709  df-top 16968  df-bases 16970  df-topon 16971  df-topsp 16972  df-cld 17088  df-ntr 17089  df-cls 17090  df-nei 17167  df-lp 17205  df-perf 17206  df-cn 17296  df-cnp 17297  df-haus 17384  df-cmp 17455  df-tx 17599  df-hmeo 17792  df-fil 17883  df-fm 17975  df-flim 17976  df-flf 17977  df-xms 18355  df-ms 18356  df-tms 18357  df-cncf 18913  df-limc 19758  df-dv 19759  df-ulm 20298  df-log 20459
  Copyright terms: Public domain W3C validator