Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem7 Unicode version

Theorem stirlinglem7 27829
Description: Algebraic manipulation of the formula for J(n) (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem7.1  |-  J  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 ) )
stirlinglem7.2  |-  K  =  ( k  e.  NN  |->  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) ) ) )
stirlinglem7.3  |-  H  =  ( k  e.  NN0  |->  ( 2  x.  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) ) )
Assertion
Ref Expression
stirlinglem7  |-  ( N  e.  NN  ->  seq  1 (  +  ,  K )  ~~>  ( J `
 N ) )
Distinct variable groups:    k, n    n, H    n, K    k, N, n
Allowed substitution hints:    H( k)    J( k, n)    K( k)

Proof of Theorem stirlinglem7
Dummy variables  i 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 10263 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 1z 10053 . . . . 5  |-  1  e.  ZZ
32a1i 10 . . . 4  |-  ( N  e.  NN  ->  1  e.  ZZ )
4 1e0p1 10152 . . . . . . . 8  |-  1  =  ( 0  +  1 )
54a1i 10 . . . . . . 7  |-  ( N  e.  NN  ->  1  =  ( 0  +  1 ) )
65seqeq1d 11052 . . . . . 6  |-  ( N  e.  NN  ->  seq  1 (  +  ,  H )  =  seq  ( 0  +  1 ) (  +  ,  H ) )
7 nn0uz 10262 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
8 0nn0 9980 . . . . . . . 8  |-  0  e.  NN0
98a1i 10 . . . . . . 7  |-  ( N  e.  NN  ->  0  e.  NN0 )
10 stirlinglem7.3 . . . . . . . . . 10  |-  H  =  ( k  e.  NN0  |->  ( 2  x.  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) ) )
1110a1i 10 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  ->  H  =  ( k  e.  NN0  |->  ( 2  x.  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) ) ) )
12 oveq2 5866 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  (
2  x.  k )  =  ( 2  x.  j ) )
1312oveq1d 5873 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
( 2  x.  k
)  +  1 )  =  ( ( 2  x.  j )  +  1 ) )
1413oveq2d 5874 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
1  /  ( ( 2  x.  k )  +  1 ) )  =  ( 1  / 
( ( 2  x.  j )  +  1 ) ) )
1513oveq2d 5874 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) )  =  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  j )  +  1 ) ) )
1614, 15oveq12d 5876 . . . . . . . . . . 11  |-  ( k  =  j  ->  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( ( 1  /  ( ( 2  x.  j )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  j
)  +  1 ) ) ) )
1716oveq2d 5874 . . . . . . . . . 10  |-  ( k  =  j  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  k )  +  1 ) ) ) )  =  ( 2  x.  ( ( 1  / 
( ( 2  x.  j )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  j )  +  1 ) ) ) ) )
1817adantl 452 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN0 )  /\  k  =  j
)  ->  ( 2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  k
)  +  1 ) ) ) )  =  ( 2  x.  (
( 1  /  (
( 2  x.  j
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  j )  +  1 ) ) ) ) )
19 simpr 447 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
j  e.  NN0 )
20 2cn 9816 . . . . . . . . . . 11  |-  2  e.  CC
2120a1i 10 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
2  e.  CC )
2220a1i 10 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN0  ->  2  e.  CC )
23 nn0cn 9975 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN0  ->  j  e.  CC )
2422, 23mulcld 8855 . . . . . . . . . . . . . 14  |-  ( j  e.  NN0  ->  ( 2  x.  j )  e.  CC )
25 ax-1cn 8795 . . . . . . . . . . . . . . 15  |-  1  e.  CC
2625a1i 10 . . . . . . . . . . . . . 14  |-  ( j  e.  NN0  ->  1  e.  CC )
2724, 26addcld 8854 . . . . . . . . . . . . 13  |-  ( j  e.  NN0  ->  ( ( 2  x.  j )  +  1 )  e.  CC )
2827adantl 452 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 2  x.  j )  +  1 )  e.  CC )
29 0re 8838 . . . . . . . . . . . . . . . 16  |-  0  e.  RR
3029a1i 10 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN0  ->  0  e.  RR )
31 1re 8837 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
3231a1i 10 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN0  ->  1  e.  RR )
33 2re 9815 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  RR
3433a1i 10 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  NN0  ->  2  e.  RR )
35 nn0re 9974 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  NN0  ->  j  e.  RR )
3634, 35remulcld 8863 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  NN0  ->  ( 2  x.  j )  e.  RR )
3736, 32readdcld 8862 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN0  ->  ( ( 2  x.  j )  +  1 )  e.  RR )
38 0lt1 9296 . . . . . . . . . . . . . . . . 17  |-  0  <  1
3938a1i 10 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN0  ->  0  <  1 )
404a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  NN0  ->  1  =  ( 0  +  1 ) )
41 2pos 9828 . . . . . . . . . . . . . . . . . . . . 21  |-  0  <  2
4229, 33ltlei 8940 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 0  <  2  ->  0  <_  2 )
4341, 42ax-mp 8 . . . . . . . . . . . . . . . . . . . 20  |-  0  <_  2
4443a1i 10 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  NN0  ->  0  <_ 
2 )
45 nn0ge0 9991 . . . . . . . . . . . . . . . . . . 19  |-  ( j  e.  NN0  ->  0  <_ 
j )
4634, 35, 44, 45mulge0d 9349 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  NN0  ->  0  <_ 
( 2  x.  j
) )
4730, 36, 32, 46leadd1dd 9386 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  NN0  ->  ( 0  +  1 )  <_ 
( ( 2  x.  j )  +  1 ) )
4840, 47eqbrtrd 4043 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN0  ->  1  <_ 
( ( 2  x.  j )  +  1 ) )
4930, 32, 37, 39, 48ltletrd 8976 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN0  ->  0  < 
( ( 2  x.  j )  +  1 ) )
5030, 49ltned 8955 . . . . . . . . . . . . . 14  |-  ( j  e.  NN0  ->  0  =/=  ( ( 2  x.  j )  +  1 ) )
5150adantl 452 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
0  =/=  ( ( 2  x.  j )  +  1 ) )
5251necomd 2529 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 2  x.  j )  +  1 )  =/=  0 )
5328, 52reccld 9529 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( 1  /  (
( 2  x.  j
)  +  1 ) )  e.  CC )
54 nncn 9754 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  N  e.  CC )
5554adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  ->  N  e.  CC )
5621, 55mulcld 8855 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( 2  x.  N
)  e.  CC )
5725a1i 10 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
1  e.  CC )
5856, 57addcld 8854 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 2  x.  N )  +  1 )  e.  CC )
5929a1i 10 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  0  e.  RR )
6031a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  1  e.  RR )
6133a1i 10 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  2  e.  RR )
62 nnre 9753 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  e.  RR )
6361, 62remulcld 8863 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  RR )
6463, 60readdcld 8862 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  e.  RR )
6538a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  0  <  1 )
6643a1i 10 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  0  <_  2 )
67 nngt0 9775 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN  ->  0  <  N )
6859, 62, 67ltled 8967 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN  ->  0  <_  N )
6961, 62, 66, 68mulge0d 9349 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  0  <_  ( 2  x.  N
) )
7059, 63, 60, 69leadd1dd 9386 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  (
0  +  1 )  <_  ( ( 2  x.  N )  +  1 ) )
715, 70eqbrtrd 4043 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  1  <_  ( ( 2  x.  N )  +  1 ) )
7259, 60, 64, 65, 71ltletrd 8976 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  0  <  ( ( 2  x.  N )  +  1 ) )
7359, 72ltned 8955 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  0  =/=  ( ( 2  x.  N )  +  1 ) )
7473necomd 2529 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  =/=  0 )
7574adantr 451 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 2  x.  N )  +  1 )  =/=  0 )
7658, 75reccld 9529 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( 1  /  (
( 2  x.  N
)  +  1 ) )  e.  CC )
77 2nn0 9982 . . . . . . . . . . . . . . 15  |-  2  e.  NN0
7877a1i 10 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
2  e.  NN0 )
7978, 19nn0mulcld 10023 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( 2  x.  j
)  e.  NN0 )
80 1nn0 9981 . . . . . . . . . . . . . 14  |-  1  e.  NN0
8180a1i 10 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
1  e.  NN0 )
8279, 81nn0addcld 10022 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 2  x.  j )  +  1 )  e.  NN0 )
8376, 82expcld 11245 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  j
)  +  1 ) )  e.  CC )
8453, 83mulcld 8855 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( ( 1  / 
( ( 2  x.  j )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  j )  +  1 ) ) )  e.  CC )
8521, 84mulcld 8855 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( 2  x.  (
( 1  /  (
( 2  x.  j
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  j )  +  1 ) ) ) )  e.  CC )
8611, 18, 19, 85fvmptd 5606 . . . . . . . 8  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( H `  j
)  =  ( 2  x.  ( ( 1  /  ( ( 2  x.  j )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  j
)  +  1 ) ) ) ) )
8786, 85eqeltrd 2357 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  NN0 )  -> 
( H `  j
)  e.  CC )
8810stirlinglem6 27828 . . . . . . 7  |-  ( N  e.  NN  ->  seq  0 (  +  ,  H )  ~~>  ( log `  ( ( N  + 
1 )  /  N
) ) )
897, 9, 87, 88clim2ser 12128 . . . . . 6  |-  ( N  e.  NN  ->  seq  ( 0  +  1 ) (  +  ,  H )  ~~>  ( ( log `  ( ( N  +  1 )  /  N ) )  -  (  seq  0
(  +  ,  H
) `  0 )
) )
906, 89eqbrtrd 4043 . . . . 5  |-  ( N  e.  NN  ->  seq  1 (  +  ,  H )  ~~>  ( ( log `  ( ( N  +  1 )  /  N ) )  -  (  seq  0
(  +  ,  H
) `  0 )
) )
91 0z 10035 . . . . . . . . 9  |-  0  e.  ZZ
92 seq1 11059 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  (  seq  0 (  +  ,  H ) `  0
)  =  ( H `
 0 ) )
9391, 92ax-mp 8 . . . . . . . 8  |-  (  seq  0 (  +  ,  H ) `  0
)  =  ( H `
 0 )
9493a1i 10 . . . . . . 7  |-  ( N  e.  NN  ->  (  seq  0 (  +  ,  H ) `  0
)  =  ( H `
 0 ) )
9510a1i 10 . . . . . . . 8  |-  ( N  e.  NN  ->  H  =  ( k  e. 
NN0  |->  ( 2  x.  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) ) ) )
96 simpr 447 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  k  =  0 )
9796oveq2d 5874 . . . . . . . . . . . 12  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( 2  x.  k )  =  ( 2  x.  0 ) )
9897oveq1d 5873 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( ( 2  x.  k )  +  1 )  =  ( ( 2  x.  0 )  +  1 ) )
9998oveq2d 5874 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( 1  / 
( ( 2  x.  k )  +  1 ) )  =  ( 1  /  ( ( 2  x.  0 )  +  1 ) ) )
10098oveq2d 5874 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  k )  +  1 ) )  =  ( ( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) )
10199, 100oveq12d 5876 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  k
)  +  1 ) ) )  =  ( ( 1  /  (
( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) ) )
102101oveq2d 5874 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  =  0 )  ->  ( 2  x.  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) )  =  ( 2  x.  ( ( 1  /  ( ( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  0 )  +  1 ) ) ) ) )
10320a1i 10 . . . . . . . . 9  |-  ( N  e.  NN  ->  2  e.  CC )
104 0cn 8831 . . . . . . . . . . . . . 14  |-  0  e.  CC
105104a1i 10 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  0  e.  CC )
106103, 105mulcld 8855 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
2  x.  0 )  e.  CC )
10725a1i 10 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  1  e.  CC )
108106, 107addcld 8854 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 2  x.  0 )  +  1 )  e.  CC )
109103mul01d 9011 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  (
2  x.  0 )  =  0 )
110109eqcomd 2288 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  0  =  ( 2  x.  0 ) )
111110oveq1d 5873 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN  ->  (
0  +  1 )  =  ( ( 2  x.  0 )  +  1 ) )
1125, 111eqtrd 2315 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  1  =  ( ( 2  x.  0 )  +  1 ) )
11365, 112breqtrd 4047 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  0  <  ( ( 2  x.  0 )  +  1 ) )
11459, 113ltned 8955 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  0  =/=  ( ( 2  x.  0 )  +  1 ) )
115114necomd 2529 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 2  x.  0 )  +  1 )  =/=  0 )
116108, 115reccld 9529 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  0 )  +  1 ) )  e.  CC )
117103, 54mulcld 8855 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  CC )
118117, 107addcld 8854 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  e.  CC )
119118, 74reccld 9529 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  N )  +  1 ) )  e.  CC )
120112, 80syl6eqelr 2372 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 2  x.  0 )  +  1 )  e.  NN0 )
121119, 120expcld 11245 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) )  e.  CC )
122116, 121mulcld 8855 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) )  e.  CC )
123103, 122mulcld 8855 . . . . . . . 8  |-  ( N  e.  NN  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  0 )  +  1 ) ) ) )  e.  CC )
12495, 102, 9, 123fvmptd 5606 . . . . . . 7  |-  ( N  e.  NN  ->  ( H `  0 )  =  ( 2  x.  ( ( 1  / 
( ( 2  x.  0 )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) ) ) )
125109oveq1d 5873 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
( 2  x.  0 )  +  1 )  =  ( 0  +  1 ) )
1265eqcomd 2288 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  (
0  +  1 )  =  1 )
127125, 126eqtrd 2315 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( 2  x.  0 )  +  1 )  =  1 )
128127oveq2d 5874 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  0 )  +  1 ) )  =  ( 1  / 
1 ) )
129107div1d 9528 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
1  /  1 )  =  1 )
130128, 129eqtrd 2315 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
1  /  ( ( 2  x.  0 )  +  1 ) )  =  1 )
131127oveq2d 5874 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) )  =  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
1 ) )
132119exp1d 11240 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ 1 )  =  ( 1  / 
( ( 2  x.  N )  +  1 ) ) )
133131, 132eqtrd 2315 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) )  =  ( 1  / 
( ( 2  x.  N )  +  1 ) ) )
134130, 133oveq12d 5876 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) )  =  ( 1  x.  ( 1  /  (
( 2  x.  N
)  +  1 ) ) ) )
135119mulid2d 8853 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
1  x.  ( 1  /  ( ( 2  x.  N )  +  1 ) ) )  =  ( 1  / 
( ( 2  x.  N )  +  1 ) ) )
136134, 135eqtrd 2315 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( 1  /  (
( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  0 )  +  1 ) ) )  =  ( 1  / 
( ( 2  x.  N )  +  1 ) ) )
137136oveq2d 5874 . . . . . . . 8  |-  ( N  e.  NN  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  0 )  +  1 ) ) ) )  =  ( 2  x.  ( 1  /  (
( 2  x.  N
)  +  1 ) ) ) )
138103, 107, 118, 74divassd 9571 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( 2  x.  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  ( 2  x.  ( 1  /  (
( 2  x.  N
)  +  1 ) ) ) )
139138eqcomd 2288 . . . . . . . 8  |-  ( N  e.  NN  ->  (
2  x.  ( 1  /  ( ( 2  x.  N )  +  1 ) ) )  =  ( ( 2  x.  1 )  / 
( ( 2  x.  N )  +  1 ) ) )
140103mulid1d 8852 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
2  x.  1 )  =  2 )
141140oveq1d 5873 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( 2  x.  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  ( 2  / 
( ( 2  x.  N )  +  1 ) ) )
142137, 139, 1413eqtrd 2319 . . . . . . 7  |-  ( N  e.  NN  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  0 )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  0 )  +  1 ) ) ) )  =  ( 2  / 
( ( 2  x.  N )  +  1 ) ) )
14394, 124, 1423eqtrd 2319 . . . . . 6  |-  ( N  e.  NN  ->  (  seq  0 (  +  ,  H ) `  0
)  =  ( 2  /  ( ( 2  x.  N )  +  1 ) ) )
144143oveq2d 5874 . . . . 5  |-  ( N  e.  NN  ->  (
( log `  (
( N  +  1 )  /  N ) )  -  (  seq  0 (  +  ,  H ) `  0
) )  =  ( ( log `  (
( N  +  1 )  /  N ) )  -  ( 2  /  ( ( 2  x.  N )  +  1 ) ) ) )
14590, 144breqtrd 4047 . . . 4  |-  ( N  e.  NN  ->  seq  1 (  +  ,  H )  ~~>  ( ( log `  ( ( N  +  1 )  /  N ) )  -  ( 2  / 
( ( 2  x.  N )  +  1 ) ) ) )
146107, 117addcld 8854 . . . . 5  |-  ( N  e.  NN  ->  (
1  +  ( 2  x.  N ) )  e.  CC )
147146halfcld 9956 . . . 4  |-  ( N  e.  NN  ->  (
( 1  +  ( 2  x.  N ) )  /  2 )  e.  CC )
148 seqex 11048 . . . . 5  |-  seq  1
(  +  ,  K
)  e.  _V
149148a1i 10 . . . 4  |-  ( N  e.  NN  ->  seq  1 (  +  ,  K )  e.  _V )
1501eleq2i 2347 . . . . . . 7  |-  ( j  e.  NN  <->  j  e.  ( ZZ>= `  1 )
)
151150biimpi 186 . . . . . 6  |-  ( j  e.  NN  ->  j  e.  ( ZZ>= `  1 )
)
152151adantl 452 . . . . 5  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  j  e.  ( ZZ>= ` 
1 ) )
15310a1i 10 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  H  =  ( k  e.  NN0  |->  ( 2  x.  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) ) ) ) )
154 oveq2 5866 . . . . . . . . . . . 12  |-  ( k  =  n  ->  (
2  x.  k )  =  ( 2  x.  n ) )
155154oveq1d 5873 . . . . . . . . . . 11  |-  ( k  =  n  ->  (
( 2  x.  k
)  +  1 )  =  ( ( 2  x.  n )  +  1 ) )
156155oveq2d 5874 . . . . . . . . . 10  |-  ( k  =  n  ->  (
1  /  ( ( 2  x.  k )  +  1 ) )  =  ( 1  / 
( ( 2  x.  n )  +  1 ) ) )
157155oveq2d 5874 . . . . . . . . . 10  |-  ( k  =  n  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) )  =  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) )
158156, 157oveq12d 5876 . . . . . . . . 9  |-  ( k  =  n  ->  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  k )  +  1 ) ) )  =  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )
159158oveq2d 5874 . . . . . . . 8  |-  ( k  =  n  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  k )  +  1 ) ) ) )  =  ( 2  x.  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
160159adantl 452 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  /\  k  =  n )  ->  (
2  x.  ( ( 1  /  ( ( 2  x.  k )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  k )  +  1 ) ) ) )  =  ( 2  x.  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
161 elfzuz 10794 . . . . . . . . 9  |-  ( n  e.  ( 1 ... j )  ->  n  e.  ( ZZ>= `  1 )
)
1621eleq2i 2347 . . . . . . . . . 10  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
163162biimpri 197 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  1
)  ->  n  e.  NN )
164 nnnn0 9972 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  e.  NN0 )
165161, 163, 1643syl 18 . . . . . . . 8  |-  ( n  e.  ( 1 ... j )  ->  n  e.  NN0 )
166165adantl 452 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  n  e.  NN0 )
16720a1i 10 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  2  e.  CC )
168166nn0cnd 10020 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  n  e.  CC )
169167, 168mulcld 8855 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  n )  e.  CC )
17025a1i 10 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  1  e.  CC )
171169, 170addcld 8854 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  n )  +  1 )  e.  CC )
172161, 163syl 15 . . . . . . . . . . . 12  |-  ( n  e.  ( 1 ... j )  ->  n  e.  NN )
17329a1i 10 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  0  e.  RR )
17431a1i 10 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  1  e.  RR )
17533a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  2  e.  RR )
176 nnre 9753 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  n  e.  RR )
177175, 176remulcld 8863 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  RR )
178177, 174readdcld 8862 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  e.  RR )
17938a1i 10 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  0  <  1 )
180 2rp 10359 . . . . . . . . . . . . . . . . . 18  |-  2  e.  RR+
181180a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  2  e.  RR+ )
182 nnrp 10363 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  ->  n  e.  RR+ )
183181, 182rpmulcld 10406 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  RR+ )
184174, 183ltaddrp2d 10420 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  1  <  ( ( 2  x.  n )  +  1 ) )
185173, 174, 178, 179, 184lttrd 8977 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  0  <  ( ( 2  x.  n )  +  1 ) )
186173, 185ltned 8955 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  0  =/=  ( ( 2  x.  n )  +  1 ) )
187186necomd 2529 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  =/=  0 )
188172, 187syl 15 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... j )  ->  (
( 2  x.  n
)  +  1 )  =/=  0 )
189188adantl 452 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  n )  +  1 )  =/=  0 )
190171, 189reccld 9529 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1  /  ( ( 2  x.  n )  +  1 ) )  e.  CC )
191119ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1  /  ( ( 2  x.  N )  +  1 ) )  e.  CC )
19277a1i 10 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  2  e.  NN0 )
193192, 166nn0mulcld 10023 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  n )  e. 
NN0 )
19480a1i 10 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  1  e.  NN0 )
195193, 194nn0addcld 10022 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  n )  +  1 )  e. 
NN0 )
196191, 195expcld 11245 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) )  e.  CC )
197190, 196mulcld 8855 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) )  e.  CC )
198167, 197mulcld 8855 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  e.  CC )
199153, 160, 166, 198fvmptd 5606 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( H `  n )  =  ( 2  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) ) ) )
200199, 198eqeltrd 2357 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( H `  n )  e.  CC )
201 addcl 8819 . . . . . 6  |-  ( ( n  e.  CC  /\  i  e.  CC )  ->  ( n  +  i )  e.  CC )
202201adantl 452 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
( n  +  i )  e.  CC )
203152, 200, 202seqcl 11066 . . . 4  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  (  seq  1 (  +  ,  H ) `
 j )  e.  CC )
20425a1i 10 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
1  e.  CC )
20520a1i 10 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
2  e.  CC )
20654ad2antrr 706 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  ->  N  e.  CC )
207205, 206mulcld 8855 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
( 2  x.  N
)  e.  CC )
208204, 207addcld 8854 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
( 1  +  ( 2  x.  N ) )  e.  CC )
209208halfcld 9956 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
( ( 1  +  ( 2  x.  N
) )  /  2
)  e.  CC )
210 simprl 732 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  ->  n  e.  CC )
211 simprr 733 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
i  e.  CC )
212209, 210, 211adddid 8859 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  ( n  e.  CC  /\  i  e.  CC ) )  -> 
( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  (
n  +  i ) )  =  ( ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  n )  +  ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  i ) ) )
213 stirlinglem7.2 . . . . . . . 8  |-  K  =  ( k  e.  NN  |->  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) ) ) )
214213a1i 10 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  K  =  ( k  e.  NN  |->  ( ( 1  / 
( ( 2  x.  k )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) ) ) ) )
215154oveq2d 5874 . . . . . . . . 9  |-  ( k  =  n  ->  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  k ) )  =  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) ) )
216156, 215oveq12d 5876 . . . . . . . 8  |-  ( k  =  n  ->  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  k ) ) )  =  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) ) )
217216adantl 452 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j
) )  /\  k  =  n )  ->  (
( 1  /  (
( 2  x.  k
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  k ) ) )  =  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) ) )
218172adantl 452 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  n  e.  NN )
219191, 193expcld 11245 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  n ) )  e.  CC )
220190, 219mulcld 8855 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) ) )  e.  CC )
221214, 217, 218, 220fvmptd 5606 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  =  ( ( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  n ) ) ) )
222146ad2antrr 706 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1  +  ( 2  x.  N ) )  e.  CC )
22329, 41gtneii 8930 . . . . . . . . . 10  |-  2  =/=  0
224223a1i 10 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  2  =/=  0 )
225222, 167, 198, 224div32d 9559 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( 2  x.  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )  =  ( ( 1  +  ( 2  x.  N
) )  x.  (
( 2  x.  (
( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) )  /  2 ) ) )
226167, 197, 167, 224div23d 9573 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) ) )  /  2 )  =  ( ( 2  / 
2 )  x.  (
( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
227167, 224dividd 9534 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  /  2 )  =  1 )
228227oveq1d 5873 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  /  2 )  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  =  ( 1  x.  (
( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
229197mulid2d 8853 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) )
230226, 228, 2293eqtrd 2319 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) ) )  /  2 )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) )
231230oveq2d 5874 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  x.  ( ( 2  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  / 
2 ) )  =  ( ( 1  +  ( 2  x.  N
) )  x.  (
( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
232222, 190, 196mul12d 9021 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  +  ( 2  x.  N ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
233118ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  N )  +  1 )  e.  CC )
23474ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  N )  +  1 )  =/=  0 )
235170, 233, 234, 195expdivd 11259 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) )  =  ( ( 1 ^ ( ( 2  x.  n )  +  1 ) )  /  (
( ( 2  x.  N )  +  1 ) ^ ( ( 2  x.  n )  +  1 ) ) ) )
236195nn0zd 10115 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
2  x.  n )  +  1 )  e.  ZZ )
237 1exp 11131 . . . . . . . . . . . . . . 15  |-  ( ( ( 2  x.  n
)  +  1 )  e.  ZZ  ->  (
1 ^ ( ( 2  x.  n )  +  1 ) )  =  1 )
238236, 237syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1 ^ ( ( 2  x.  n )  +  1 ) )  =  1 )
239238oveq1d 5873 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1 ^ ( ( 2  x.  n )  +  1 ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( ( 2  x.  n )  +  1 ) ) )  =  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ ( ( 2  x.  n )  +  1 ) ) ) )
240235, 239eqtrd 2315 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) )  =  ( 1  /  (
( ( 2  x.  N )  +  1 ) ^ ( ( 2  x.  n )  +  1 ) ) ) )
241240oveq2d 5874 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) )  =  ( ( 1  +  ( 2  x.  N
) )  x.  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
242233, 195expcld 11245 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 ) ^ ( ( 2  x.  n )  +  1 ) )  e.  CC )
243233, 234, 236expne0d 11251 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 ) ^ ( ( 2  x.  n )  +  1 ) )  =/=  0 )
244222, 242, 243divrecd 9539 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( ( 2  x.  n )  +  1 ) ) )  =  ( ( 1  +  ( 2  x.  N
) )  x.  (
1  /  ( ( ( 2  x.  N
)  +  1 ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )
245244eqcomd 2288 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  x.  ( 1  / 
( ( ( 2  x.  N )  +  1 ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  =  ( ( 1  +  ( 2  x.  N
) )  /  (
( ( 2  x.  N )  +  1 ) ^ ( ( 2  x.  n )  +  1 ) ) ) )
246233, 193expp1d 11246 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 ) ^ ( ( 2  x.  n )  +  1 ) )  =  ( ( ( ( 2  x.  N )  +  1 ) ^
( 2  x.  n
) )  x.  (
( 2  x.  N
)  +  1 ) ) )
247246oveq2d 5874 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( ( 2  x.  n )  +  1 ) ) )  =  ( ( 1  +  ( 2  x.  N
) )  /  (
( ( ( 2  x.  N )  +  1 ) ^ (
2  x.  n ) )  x.  ( ( 2  x.  N )  +  1 ) ) ) )
24854ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  N  e.  CC )
249167, 248mulcld 8855 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  N )  e.  CC )
250170, 249addcomd 9014 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1  +  ( 2  x.  N ) )  =  ( ( 2  x.  N )  +  1 ) )
251233, 193expcld 11245 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) )  e.  CC )
252251, 233mulcomd 8856 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) )  x.  ( ( 2  x.  N )  +  1 ) )  =  ( ( ( 2  x.  N )  +  1 )  x.  (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) ) ) )
253250, 252oveq12d 5876 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  /  ( ( ( ( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) )  x.  ( ( 2  x.  N )  +  1 ) ) )  =  ( ( ( 2  x.  N )  +  1 )  /  (
( ( 2  x.  N )  +  1 )  x.  ( ( ( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) ) ) ) )
254 2z 10054 . . . . . . . . . . . . . . . . 17  |-  2  e.  ZZ
255254a1i 10 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  2  e.  ZZ )
256166nn0zd 10115 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  n  e.  ZZ )
257255, 256zmulcld 10123 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  n )  e.  ZZ )
258233, 234, 257expne0d 11251 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) )  =/=  0 )
259233, 233, 251, 234, 258divdiv1d 9567 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( ( 2  x.  N )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( 2  x.  n
) ) )  =  ( ( ( 2  x.  N )  +  1 )  /  (
( ( 2  x.  N )  +  1 )  x.  ( ( ( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) ) ) ) )
260259eqcomd 2288 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 )  /  ( ( ( 2  x.  N )  +  1 )  x.  ( ( ( 2  x.  N )  +  1 ) ^ (
2  x.  n ) ) ) )  =  ( ( ( ( 2  x.  N )  +  1 )  / 
( ( 2  x.  N )  +  1 ) )  /  (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) ) ) )
261247, 253, 2603eqtrd 2319 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( ( 2  x.  n )  +  1 ) ) )  =  ( ( ( ( 2  x.  N )  +  1 )  / 
( ( 2  x.  N )  +  1 ) )  /  (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) ) ) )
262241, 245, 2613eqtrd 2319 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) )  =  ( ( ( ( 2  x.  N )  +  1 )  / 
( ( 2  x.  N )  +  1 ) )  /  (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) ) ) )
263262oveq2d 5874 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  +  ( 2  x.  N ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( ( ( 2  x.  N )  +  1 )  /  (
( 2  x.  N
)  +  1 ) )  /  ( ( ( 2  x.  N
)  +  1 ) ^ ( 2  x.  n ) ) ) ) )
264233, 234dividd 9534 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  1 )
265 1exp 11131 . . . . . . . . . . . . . . 15  |-  ( ( 2  x.  n )  e.  ZZ  ->  (
1 ^ ( 2  x.  n ) )  =  1 )
266257, 265syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 1 ^ ( 2  x.  n ) )  =  1 )
267266eqcomd 2288 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  1  =  ( 1 ^ (
2  x.  n ) ) )
268264, 267eqtrd 2315 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 2  x.  N
)  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  =  ( 1 ^ (
2  x.  n ) ) )
269268oveq1d 5873 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( ( 2  x.  N )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( 2  x.  n
) ) )  =  ( ( 1 ^ ( 2  x.  n
) )  /  (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) ) ) )
270170, 233, 234, 193expdivd 11259 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  N )  +  1 ) ) ^ ( 2  x.  n ) )  =  ( ( 1 ^ ( 2  x.  n
) )  /  (
( ( 2  x.  N )  +  1 ) ^ ( 2  x.  n ) ) ) )
271270eqcomd 2288 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1 ^ ( 2  x.  n ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( 2  x.  n
) ) )  =  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) )
272269, 271eqtrd 2315 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( ( 2  x.  N )  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  /  ( ( ( 2  x.  N )  +  1 ) ^
( 2  x.  n
) ) )  =  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
2  x.  n ) ) )
273272oveq2d 5874 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( ( ( 2  x.  N
)  +  1 )  /  ( ( 2  x.  N )  +  1 ) )  / 
( ( ( 2  x.  N )  +  1 ) ^ (
2  x.  n ) ) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  n ) ) ) )
274232, 263, 2733eqtrd 2319 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  +  ( 2  x.  N ) )  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  n ) ) ) )
275225, 231, 2743eqtrd 2319 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( 2  x.  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )  =  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( 2  x.  n ) ) ) )
276275eqcomd 2288 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( 2  x.  n
) ) )  =  ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  (
2  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  /  ( ( 2  x.  N )  +  1 ) ) ^
( ( 2  x.  n )  +  1 ) ) ) ) ) )
277199eqcomd 2288 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( 2  x.  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  ( ( 1  / 
( ( 2  x.  N )  +  1 ) ) ^ (
( 2  x.  n
)  +  1 ) ) ) )  =  ( H `  n
) )
278277oveq2d 5874 . . . . . 6  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( (
( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( 2  x.  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (
( 1  /  (
( 2  x.  N
)  +  1 ) ) ^ ( ( 2  x.  n )  +  1 ) ) ) ) )  =  ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( H `  n )
) )
279221, 276, 2783eqtrd 2319 . . . . 5  |-  ( ( ( N  e.  NN  /\  j  e.  NN )  /\  n  e.  ( 1 ... j ) )  ->  ( K `  n )  =  ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( H `
 n ) ) )
280202, 212, 152, 200, 279seqdistr 11097 . . . 4  |-  ( ( N  e.  NN  /\  j  e.  NN )  ->  (  seq  1 (  +  ,  K ) `
 j )  =  ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  (  seq  1 (  +  ,  H ) `  j
) ) )
2811, 3, 145, 147, 149, 203, 280climmulc2 12110 . . 3  |-  ( N  e.  NN  ->  seq  1 (  +  ,  K )  ~~>  ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( ( log `  ( ( N  + 
1 )  /  N
) )  -  (
2  /  ( ( 2  x.  N )  +  1 ) ) ) ) )
282107, 117addcomd 9014 . . . . . 6  |-  ( N  e.  NN  ->  (
1  +  ( 2  x.  N ) )  =  ( ( 2  x.  N )  +  1 ) )
283282oveq1d 5873 . . . . 5  |-  ( N  e.  NN  ->  (
( 1  +  ( 2  x.  N ) )  /  2 )  =  ( ( ( 2  x.  N )  +  1 )  / 
2 ) )
284283oveq1d 5873 . . . 4  |-  ( N  e.  NN  ->  (
( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( ( log `  ( ( N  +  1 )  /  N ) )  -  ( 2  / 
( ( 2  x.  N )  +  1 ) ) ) )  =  ( ( ( ( 2  x.  N
)  +  1 )  /  2 )  x.  ( ( log `  (
( N  +  1 )  /  N ) )  -  ( 2  /  ( ( 2  x.  N )  +  1 ) ) ) ) )
285283, 147eqeltrrd 2358 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 )  /  2 )  e.  CC )
28654, 107addcld 8854 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  CC )
287 nnne0 9778 . . . . . . 7  |-  ( N  e.  NN  ->  N  =/=  0 )
288286, 54, 287divcld 9536 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  N )  e.  CC )
28962, 60readdcld 8862 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  RR )
29062ltp1d 9687 . . . . . . . . . 10  |-  ( N  e.  NN  ->  N  <  ( N  +  1 ) )
29159, 62, 289, 67, 290lttrd 8977 . . . . . . . . 9  |-  ( N  e.  NN  ->  0  <  ( N  +  1 ) )
29259, 291ltned 8955 . . . . . . . 8  |-  ( N  e.  NN  ->  0  =/=  ( N  +  1 ) )
293292necomd 2529 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  =/=  0 )
294286, 54, 293, 287divne0d 9552 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  +  1 )  /  N )  =/=  0 )
295288, 294logcld 19928 . . . . 5  |-  ( N  e.  NN  ->  ( log `  ( ( N  +  1 )  /  N ) )  e.  CC )
296142, 123eqeltrrd 2358 . . . . 5  |-  ( N  e.  NN  ->  (
2  /  ( ( 2  x.  N )  +  1 ) )  e.  CC )
297285, 295, 296subdid 9235 . . . 4  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  /  2
)  x.  ( ( log `  ( ( N  +  1 )  /  N ) )  -  ( 2  / 
( ( 2  x.  N )  +  1 ) ) ) )  =  ( ( ( ( ( 2  x.  N )  +  1 )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  (
( ( ( 2  x.  N )  +  1 )  /  2
)  x.  ( 2  /  ( ( 2  x.  N )  +  1 ) ) ) ) )
298117, 107addcomd 9014 . . . . . . 7  |-  ( N  e.  NN  ->  (
( 2  x.  N
)  +  1 )  =  ( 1  +  ( 2  x.  N
) ) )
299298oveq1d 5873 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( 2  x.  N )  +  1 )  /  2 )  =  ( ( 1  +  ( 2  x.  N ) )  / 
2 ) )
300299oveq1d 5873 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  =  ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )
301223a1i 10 . . . . . 6  |-  ( N  e.  NN  ->  2  =/=  0 )
302118, 103, 74, 301divcan6d 9555 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ( 2  x.  N )  +  1 )  /  2
)  x.  ( 2  /  ( ( 2  x.  N )  +  1 ) ) )  =  1 )
303300, 302oveq12d 5876 . . . 4  |-  ( N  e.  NN  ->  (
( ( ( ( 2  x.  N )  +  1 )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  -  ( ( ( ( 2  x.  N
)  +  1 )  /  2 )  x.  ( 2  /  (
( 2  x.  N
)  +  1 ) ) ) )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 ) )
304284, 297, 3033eqtrd 2319 . . 3  |-  ( N  e.  NN  ->  (
( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( ( log `  ( ( N  +  1 )  /  N ) )  -  ( 2  / 
( ( 2  x.  N )  +  1 ) ) ) )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 ) )
305281, 304breqtrd 4047 . 2  |-  ( N  e.  NN  ->  seq  1 (  +  ,  K )  ~~>  ( ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  - 
1 ) )
306 stirlinglem7.1 . . . . 5  |-  J  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 ) )
307306a1i 10 . . . 4  |-  ( N  e.  NN  ->  J  =  ( n  e.  NN  |->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 ) ) )
308 oveq2 5866 . . . . . . . . 9  |-  ( n  =  N  ->  (
2  x.  n )  =  ( 2  x.  N ) )
309308oveq2d 5874 . . . . . . . 8  |-  ( n  =  N  ->  (
1  +  ( 2  x.  n ) )  =  ( 1  +  ( 2  x.  N
) ) )
310309oveq1d 5873 . . . . . . 7  |-  ( n  =  N  ->  (
( 1  +  ( 2  x.  n ) )  /  2 )  =  ( ( 1  +  ( 2  x.  N ) )  / 
2 ) )
311 oveq1 5865 . . . . . . . . 9  |-  ( n  =  N  ->  (
n  +  1 )  =  ( N  + 
1 ) )
312 id 19 . . . . . . . . 9  |-  ( n  =  N  ->  n  =  N )
313311, 312oveq12d 5876 . . . . . . . 8  |-  ( n  =  N  ->  (
( n  +  1 )  /  n )  =  ( ( N  +  1 )  /  N ) )
314313fveq2d 5529 . . . . . . 7  |-  ( n  =  N  ->  ( log `  ( ( n  +  1 )  /  n ) )  =  ( log `  (
( N  +  1 )  /  N ) ) )
315310, 314oveq12d 5876 . . . . . 6  |-  ( n  =  N  ->  (
( ( 1  +  ( 2  x.  n
) )  /  2
)  x.  ( log `  ( ( n  + 
1 )  /  n
) ) )  =  ( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) ) )
316315oveq1d 5873 . . . . 5  |-  ( n  =  N  ->  (
( ( ( 1  +  ( 2  x.  n ) )  / 
2 )  x.  ( log `  ( ( n  +  1 )  /  n ) ) )  -  1 )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 ) )
317316adantl 452 . . . 4  |-  ( ( N  e.  NN  /\  n  =  N )  ->  ( ( ( ( 1  +  ( 2  x.  n ) )  /  2 )  x.  ( log `  (
( n  +  1 )  /  n ) ) )  -  1 )  =  ( ( ( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  - 
1 ) )
318 id 19 . . . 4  |-  ( N  e.  NN  ->  N  e.  NN )
319147, 295mulcld 8855 . . . . 5  |-  ( N  e.  NN  ->  (
( ( 1  +  ( 2  x.  N
) )  /  2
)  x.  ( log `  ( ( N  + 
1 )  /  N
) ) )  e.  CC )
320319, 107subcld 9157 . . . 4  |-  ( N  e.  NN  ->  (
( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  -  1 )  e.  CC )
321307, 317, 318, 320fvmptd 5606 . . 3  |-  ( N  e.  NN  ->  ( J `  N )  =  ( ( ( ( 1  +  ( 2  x.  N ) )  /  2 )  x.  ( log `  (
( N  +  1 )  /  N ) ) )  -  1 ) )
322321eqcomd 2288 . 2  |-  ( N  e.  NN  ->  (
( ( ( 1  +  ( 2  x.  N ) )  / 
2 )  x.  ( log `  ( ( N  +  1 )  /  N ) ) )  -  1 )  =  ( J `  N
) )
323305, 322breqtrd 4047 1  |-  ( N  e.  NN  ->  seq  1 (  +  ,  K )  ~~>  ( J `
 N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   _Vcvv 2788   class class class wbr 4023    e. cmpt 4077   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   2c2 9795   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   RR+crp 10354   ...cfz 10782    seq cseq 11046   ^cexp 11104    ~~> cli 11958   logclog 19912
This theorem is referenced by:  stirlinglem9  27831
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352  df-tan 12353  df-pi 12354  df-dvds 12532  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-cmp 17114  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217  df-ulm 19756  df-log 19914
  Copyright terms: Public domain W3C validator