Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweid Unicode version

Theorem stoweid 27473
Description: This theorem proves the Stone-Weierstrass theorem for real valued functions: let  J be a compact topology on  T, and  C be the set of real continuous functions on  T. Assume that  A is a subalgebra of  C (closed under addition and multiplication of functions) containing constant functions and discriminating points (if  r and  t are distinct points in  T, then there exists a function  h in  A such that h(r) is distinct from h(t) ). Then, for any continuous function 
F and for any positive real  E, there exists a function  f in the subalgebra  A, such that  f approximates  F up to  E ( E represents the usual ε value). As a classical example, given any a,b reals, the closed interval  T  =  [
a ,  b ] could be taken, along with the subalgebra  A of real polynomials on  T, and then use this theorem to easily prove that real polynomials are dense in the standard metric space of continuous functions on  [ a ,  b ]. The proof and lemmas are written following [BrosowskiDeutsh] p. 89 (through page 92). Some effort is put in avoiding the use of the axiom of choice. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweid.1  |-  F/_ t F
stoweid.2  |-  F/ t
ph
stoweid.3  |-  K  =  ( topGen `  ran  (,) )
stoweid.4  |-  ( ph  ->  J  e.  Comp )
stoweid.5  |-  T  = 
U. J
stoweid.6  |-  C  =  ( J  Cn  K
)
stoweid.7  |-  ( ph  ->  A  C_  C )
stoweid.8  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweid.9  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweid.10  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweid.11  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. h  e.  A  ( h `  r
)  =/=  ( h `
 t ) )
stoweid.12  |-  ( ph  ->  F  e.  C )
stoweid.13  |-  ( ph  ->  E  e.  RR+ )
Assertion
Ref Expression
stoweid  |-  ( ph  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  E )
Distinct variable groups:    f, g,
t, A    f, h, r, x, t, A    f, E, g, t    f, F, g    f, J, r, t    T, f, g, t    ph, f, g    h, E, r, x    h, F, r, x    T, h, r, x    ph, h, r, x    t, K
Allowed substitution hints:    ph( t)    C( x, t, f, g, h, r)    F( t)    J( x, g, h)    K( x, f, g, h, r)

Proof of Theorem stoweid
StepHypRef Expression
1 simpr 448 . . . 4  |-  ( (
ph  /\  T  =  (/) )  ->  T  =  (/) )
2 stoweid.10 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
32ralrimiva 2725 . . . . . 6  |-  ( ph  ->  A. x  e.  RR  ( t  e.  T  |->  x )  e.  A
)
4 1re 9016 . . . . . 6  |-  1  e.  RR
5 id 20 . . . . . . . . 9  |-  ( x  =  1  ->  x  =  1 )
65mpteq2dv 4230 . . . . . . . 8  |-  ( x  =  1  ->  (
t  e.  T  |->  x )  =  ( t  e.  T  |->  1 ) )
76eleq1d 2446 . . . . . . 7  |-  ( x  =  1  ->  (
( t  e.  T  |->  x )  e.  A  <->  ( t  e.  T  |->  1 )  e.  A ) )
87rspccv 2985 . . . . . 6  |-  ( A. x  e.  RR  (
t  e.  T  |->  x )  e.  A  -> 
( 1  e.  RR  ->  ( t  e.  T  |->  1 )  e.  A
) )
93, 4, 8ee10 1382 . . . . 5  |-  ( ph  ->  ( t  e.  T  |->  1 )  e.  A
)
109adantr 452 . . . 4  |-  ( (
ph  /\  T  =  (/) )  ->  ( t  e.  T  |->  1 )  e.  A )
111, 10stoweidlem9 27419 . . 3  |-  ( (
ph  /\  T  =  (/) )  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t )
) )  <  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) ) )
12 stoweid.1 . . . 4  |-  F/_ t F
13 nfv 1626 . . . . 5  |-  F/ f
ph
14 nfv 1626 . . . . 5  |-  F/ f  -.  T  =  (/)
1513, 14nfan 1836 . . . 4  |-  F/ f ( ph  /\  -.  T  =  (/) )
16 stoweid.2 . . . . 5  |-  F/ t
ph
17 nfv 1626 . . . . 5  |-  F/ t  -.  T  =  (/)
1816, 17nfan 1836 . . . 4  |-  F/ t ( ph  /\  -.  T  =  (/) )
19 eqid 2380 . . . 4  |-  ( t  e.  T  |->  ( ( F `  t )  -  sup ( ran 
F ,  RR ,  `'  <  ) ) )  =  ( t  e.  T  |->  ( ( F `
 t )  -  sup ( ran  F ,  RR ,  `'  <  ) ) )
20 stoweid.3 . . . 4  |-  K  =  ( topGen `  ran  (,) )
21 stoweid.5 . . . 4  |-  T  = 
U. J
22 stoweid.4 . . . . 5  |-  ( ph  ->  J  e.  Comp )
2322adantr 452 . . . 4  |-  ( (
ph  /\  -.  T  =  (/) )  ->  J  e.  Comp )
24 stoweid.6 . . . 4  |-  C  =  ( J  Cn  K
)
25 stoweid.7 . . . . 5  |-  ( ph  ->  A  C_  C )
2625adantr 452 . . . 4  |-  ( (
ph  /\  -.  T  =  (/) )  ->  A  C_  C )
27 stoweid.8 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
28273adant1r 1177 . . . 4  |-  ( ( ( ph  /\  -.  T  =  (/) )  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A
)
29 stoweid.9 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
30293adant1r 1177 . . . 4  |-  ( ( ( ph  /\  -.  T  =  (/) )  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A
)
312adantlr 696 . . . 4  |-  ( ( ( ph  /\  -.  T  =  (/) )  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A
)
32 stoweid.11 . . . . 5  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. h  e.  A  ( h `  r
)  =/=  ( h `
 t ) )
3332adantlr 696 . . . 4  |-  ( ( ( ph  /\  -.  T  =  (/) )  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t
) )  ->  E. h  e.  A  ( h `  r )  =/=  (
h `  t )
)
34 stoweid.12 . . . . 5  |-  ( ph  ->  F  e.  C )
3534adantr 452 . . . 4  |-  ( (
ph  /\  -.  T  =  (/) )  ->  F  e.  C )
36 stoweid.13 . . . . . 6  |-  ( ph  ->  E  e.  RR+ )
37 4re 9998 . . . . . . . . 9  |-  4  e.  RR
38 4pos 10011 . . . . . . . . 9  |-  0  <  4
3937, 38elrpii 10540 . . . . . . . 8  |-  4  e.  RR+
4039a1i 11 . . . . . . 7  |-  ( ph  ->  4  e.  RR+ )
4140rpreccld 10583 . . . . . 6  |-  ( ph  ->  ( 1  /  4
)  e.  RR+ )
42 ifcl 3711 . . . . . 6  |-  ( ( E  e.  RR+  /\  (
1  /  4 )  e.  RR+ )  ->  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  e.  RR+ )
4336, 41, 42syl2anc 643 . . . . 5  |-  ( ph  ->  if ( E  <_ 
( 1  /  4
) ,  E , 
( 1  /  4
) )  e.  RR+ )
4443adantr 452 . . . 4  |-  ( (
ph  /\  -.  T  =  (/) )  ->  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  e.  RR+ )
45 df-ne 2545 . . . . . 6  |-  ( T  =/=  (/)  <->  -.  T  =  (/) )
4645biimpri 198 . . . . 5  |-  ( -.  T  =  (/)  ->  T  =/=  (/) )
4746adantl 453 . . . 4  |-  ( (
ph  /\  -.  T  =  (/) )  ->  T  =/=  (/) )
4836rpred 10573 . . . . . . 7  |-  ( ph  ->  E  e.  RR )
49 0re 9017 . . . . . . . . . 10  |-  0  e.  RR
5049, 38gtneii 9109 . . . . . . . . 9  |-  4  =/=  0
5137, 50rereccli 9704 . . . . . . . 8  |-  ( 1  /  4 )  e.  RR
5251a1i 11 . . . . . . 7  |-  ( ph  ->  ( 1  /  4
)  e.  RR )
53 ifcl 3711 . . . . . . 7  |-  ( ( E  e.  RR  /\  ( 1  /  4
)  e.  RR )  ->  if ( E  <_  ( 1  / 
4 ) ,  E ,  ( 1  / 
4 ) )  e.  RR )
5448, 52, 53syl2anc 643 . . . . . 6  |-  ( ph  ->  if ( E  <_ 
( 1  /  4
) ,  E , 
( 1  /  4
) )  e.  RR )
55 3re 9996 . . . . . . . 8  |-  3  e.  RR
56 3ne0 10010 . . . . . . . 8  |-  3  =/=  0
5755, 56rereccli 9704 . . . . . . 7  |-  ( 1  /  3 )  e.  RR
5857a1i 11 . . . . . 6  |-  ( ph  ->  ( 1  /  3
)  e.  RR )
5936rpxrd 10574 . . . . . . 7  |-  ( ph  ->  E  e.  RR* )
6041rpxrd 10574 . . . . . . 7  |-  ( ph  ->  ( 1  /  4
)  e.  RR* )
61 xrmin2 10691 . . . . . . 7  |-  ( ( E  e.  RR*  /\  (
1  /  4 )  e.  RR* )  ->  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  <_  ( 1  / 
4 ) )
6259, 60, 61syl2anc 643 . . . . . 6  |-  ( ph  ->  if ( E  <_ 
( 1  /  4
) ,  E , 
( 1  /  4
) )  <_  (
1  /  4 ) )
63 3lt4 10070 . . . . . . . 8  |-  3  <  4
64 3pos 10009 . . . . . . . . 9  |-  0  <  3
6555, 37, 64, 38ltrecii 9852 . . . . . . . 8  |-  ( 3  <  4  <->  ( 1  /  4 )  < 
( 1  /  3
) )
6663, 65mpbi 200 . . . . . . 7  |-  ( 1  /  4 )  < 
( 1  /  3
)
6766a1i 11 . . . . . 6  |-  ( ph  ->  ( 1  /  4
)  <  ( 1  /  3 ) )
6854, 52, 58, 62, 67lelttrd 9153 . . . . 5  |-  ( ph  ->  if ( E  <_ 
( 1  /  4
) ,  E , 
( 1  /  4
) )  <  (
1  /  3 ) )
6968adantr 452 . . . 4  |-  ( (
ph  /\  -.  T  =  (/) )  ->  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  <  ( 1  / 
3 ) )
7012, 15, 18, 19, 20, 21, 23, 24, 26, 28, 30, 31, 33, 35, 44, 47, 69stoweidlem62 27472 . . 3  |-  ( (
ph  /\  -.  T  =  (/) )  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t )
) )  <  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) ) )
7111, 70pm2.61dan 767 . 2  |-  ( ph  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  if ( E  <_  ( 1  / 
4 ) ,  E ,  ( 1  / 
4 ) ) )
72 nfv 1626 . . . . 5  |-  F/ t  f  e.  A
7316, 72nfan 1836 . . . 4  |-  F/ t ( ph  /\  f  e.  A )
74 xrmin1 10690 . . . . . . 7  |-  ( ( E  e.  RR*  /\  (
1  /  4 )  e.  RR* )  ->  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  <_  E )
7559, 60, 74syl2anc 643 . . . . . 6  |-  ( ph  ->  if ( E  <_ 
( 1  /  4
) ,  E , 
( 1  /  4
) )  <_  E
)
7675ad2antrr 707 . . . . 5  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  <_  E )
7725ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  A  C_  C )
78 simplr 732 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  f  e.  A )
7977, 78sseldd 3285 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  f  e.  C )
8020, 21, 24, 79fcnre 27357 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  f : T --> RR )
81 simpr 448 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  t  e.  T )
8280, 81jca 519 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  (
f : T --> RR  /\  t  e.  T )
)
83 ffvelrn 5800 . . . . . . . . 9  |-  ( ( f : T --> RR  /\  t  e.  T )  ->  ( f `  t
)  e.  RR )
84 recn 9006 . . . . . . . . 9  |-  ( ( f `  t )  e.  RR  ->  (
f `  t )  e.  CC )
8582, 83, 843syl 19 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  (
f `  t )  e.  CC )
8634ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  F  e.  C )
8720, 21, 24, 86fcnre 27357 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  F : T --> RR )
8887, 81jca 519 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  ( F : T --> RR  /\  t  e.  T )
)
89 ffvelrn 5800 . . . . . . . . 9  |-  ( ( F : T --> RR  /\  t  e.  T )  ->  ( F `  t
)  e.  RR )
90 recn 9006 . . . . . . . . 9  |-  ( ( F `  t )  e.  RR  ->  ( F `  t )  e.  CC )
9188, 89, 903syl 19 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  ( F `  t )  e.  CC )
9285, 91subcld 9336 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  (
( f `  t
)  -  ( F `
 t ) )  e.  CC )
9392abscld 12158 . . . . . 6  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  ( abs `  ( ( f `
 t )  -  ( F `  t ) ) )  e.  RR )
9437, 38gt0ne0ii 9488 . . . . . . . . . 10  |-  4  =/=  0
954, 37, 943pm3.2i 1132 . . . . . . . . 9  |-  ( 1  e.  RR  /\  4  e.  RR  /\  4  =/=  0 )
96 redivcl 9658 . . . . . . . . 9  |-  ( ( 1  e.  RR  /\  4  e.  RR  /\  4  =/=  0 )  ->  (
1  /  4 )  e.  RR )
9795, 96mp1i 12 . . . . . . . 8  |-  ( ph  ->  ( 1  /  4
)  e.  RR )
9848, 97, 53syl2anc 643 . . . . . . 7  |-  ( ph  ->  if ( E  <_ 
( 1  /  4
) ,  E , 
( 1  /  4
) )  e.  RR )
9998ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  e.  RR )
10048ad2antrr 707 . . . . . 6  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  E  e.  RR )
101 ltletr 9092 . . . . . 6  |-  ( ( ( abs `  (
( f `  t
)  -  ( F `
 t ) ) )  e.  RR  /\  if ( E  <_  (
1  /  4 ) ,  E ,  ( 1  /  4 ) )  e.  RR  /\  E  e.  RR )  ->  ( ( ( abs `  ( ( f `  t )  -  ( F `  t )
) )  <  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  /\  if ( E  <_  ( 1  / 
4 ) ,  E ,  ( 1  / 
4 ) )  <_  E )  ->  ( abs `  ( ( f `
 t )  -  ( F `  t ) ) )  <  E
) )
10293, 99, 100, 101syl3anc 1184 . . . . 5  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  (
( ( abs `  (
( f `  t
)  -  ( F `
 t ) ) )  <  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  /\  if ( E  <_  ( 1  / 
4 ) ,  E ,  ( 1  / 
4 ) )  <_  E )  ->  ( abs `  ( ( f `
 t )  -  ( F `  t ) ) )  <  E
) )
10376, 102mpan2d 656 . . . 4  |-  ( ( ( ph  /\  f  e.  A )  /\  t  e.  T )  ->  (
( abs `  (
( f `  t
)  -  ( F `
 t ) ) )  <  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  ->  ( abs `  (
( f `  t
)  -  ( F `
 t ) ) )  <  E ) )
10473, 103ralimdaa 2719 . . 3  |-  ( (
ph  /\  f  e.  A )  ->  ( A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  if ( E  <_  ( 1  / 
4 ) ,  E ,  ( 1  / 
4 ) )  ->  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  E ) )
105104reximdva 2754 . 2  |-  ( ph  ->  ( E. f  e.  A  A. t  e.  T  ( abs `  (
( f `  t
)  -  ( F `
 t ) ) )  <  if ( E  <_  ( 1  /  4 ) ,  E ,  ( 1  /  4 ) )  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  E ) )
10671, 105mpd 15 1  |-  ( ph  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  E )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936   F/wnf 1550    = wceq 1649    e. wcel 1717   F/_wnfc 2503    =/= wne 2543   A.wral 2642   E.wrex 2643    C_ wss 3256   (/)c0 3564   ifcif 3675   U.cuni 3950   class class class wbr 4146    e. cmpt 4200   `'ccnv 4810   ran crn 4812   -->wf 5383   ` cfv 5387  (class class class)co 6013   supcsup 7373   CCcc 8914   RRcr 8915   0cc0 8916   1c1 8917    + caddc 8919    x. cmul 8921   RR*cxr 9045    < clt 9046    <_ cle 9047    - cmin 9216    / cdiv 9602   3c3 9975   4c4 9976   RR+crp 10537   (,)cioo 10841   abscabs 11959   topGenctg 13585    Cn ccn 17203   Compccmp 17364
This theorem is referenced by:  stowei  27474
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-inf2 7522  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994  ax-addf 8995  ax-mulf 8996
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-iin 4031  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-se 4476  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-isom 5396  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-of 6237  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-2o 6654  df-oadd 6657  df-er 6834  df-map 6949  df-pm 6950  df-ixp 6993  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-fi 7344  df-sup 7374  df-oi 7405  df-card 7752  df-cda 7974  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-4 9985  df-5 9986  df-6 9987  df-7 9988  df-8 9989  df-9 9990  df-10 9991  df-n0 10147  df-z 10208  df-dec 10308  df-uz 10414  df-q 10500  df-rp 10538  df-xneg 10635  df-xadd 10636  df-xmul 10637  df-ioo 10845  df-ioc 10846  df-ico 10847  df-icc 10848  df-fz 10969  df-fzo 11059  df-fl 11122  df-seq 11244  df-exp 11303  df-hash 11539  df-cj 11824  df-re 11825  df-im 11826  df-sqr 11960  df-abs 11961  df-clim 12202  df-rlim 12203  df-sum 12400  df-struct 13391  df-ndx 13392  df-slot 13393  df-base 13394  df-sets 13395  df-ress 13396  df-plusg 13462  df-mulr 13463  df-starv 13464  df-sca 13465  df-vsca 13466  df-tset 13468  df-ple 13469  df-ds 13471  df-unif 13472  df-hom 13473  df-cco 13474  df-rest 13570  df-topn 13571  df-topgen 13587  df-pt 13588  df-prds 13591  df-xrs 13646  df-0g 13647  df-gsum 13648  df-qtop 13653  df-imas 13654  df-xps 13656  df-mre 13731  df-mrc 13732  df-acs 13734  df-mnd 14610  df-submnd 14659  df-mulg 14735  df-cntz 15036  df-cmn 15334  df-xmet 16612  df-met 16613  df-bl 16614  df-mopn 16615  df-cnfld 16620  df-top 16879  df-bases 16881  df-topon 16882  df-topsp 16883  df-cld 16999  df-cn 17206  df-cnp 17207  df-cmp 17365  df-tx 17508  df-hmeo 17701  df-xms 18252  df-ms 18253  df-tms 18254
  Copyright terms: Public domain W3C validator