Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem15 Unicode version

Theorem stoweidlem15 27433
Description: This lemma is used to prove the existence of a function  p as in Lemma 1 from [BrosowskiDeutsh] p. 90:  p is in the subalgebra, such that 0 ≤ p ≤ 1, p(t_0) = 0, and p > 0 on T - U. Here  ( G `  I ) is used to represent p(t_i) in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem15.1  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
stoweidlem15.3  |-  ( ph  ->  G : ( 1 ... M ) --> Q )
stoweidlem15.4  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
Assertion
Ref Expression
stoweidlem15  |-  ( ( ( ph  /\  I  e.  ( 1 ... M
) )  /\  S  e.  T )  ->  (
( ( G `  I ) `  S
)  e.  RR  /\  0  <_  ( ( G `
 I ) `  S )  /\  (
( G `  I
) `  S )  <_  1 ) )
Distinct variable groups:    A, f    f, G    f, I    T, f    ph, f    t, h, G    A, h    h, I, t    T, h, t    h, Z
Allowed substitution hints:    ph( t, h)    A( t)    Q( t, f, h)    S( t, f, h)    M( t, f, h)    Z( t, f)

Proof of Theorem stoweidlem15
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 simpl 444 . . . 4  |-  ( (
ph  /\  I  e.  ( 1 ... M
) )  ->  ph )
2 stoweidlem15.3 . . . . . 6  |-  ( ph  ->  G : ( 1 ... M ) --> Q )
32fnvinran 27354 . . . . 5  |-  ( (
ph  /\  I  e.  ( 1 ... M
) )  ->  ( G `  I )  e.  Q )
4 elrabi 3034 . . . . . 6  |-  ( ( G `  I )  e.  { h  e.  A  |  ( ( h `  Z )  =  0  /\  A. t  e.  T  (
0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }  ->  ( G `  I )  e.  A
)
5 stoweidlem15.1 . . . . . 6  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
64, 5eleq2s 2480 . . . . 5  |-  ( ( G `  I )  e.  Q  ->  ( G `  I )  e.  A )
73, 6syl 16 . . . 4  |-  ( (
ph  /\  I  e.  ( 1 ... M
) )  ->  ( G `  I )  e.  A )
8 eleq1 2448 . . . . . . . 8  |-  ( f  =  ( G `  I )  ->  (
f  e.  A  <->  ( G `  I )  e.  A
) )
98anbi2d 685 . . . . . . 7  |-  ( f  =  ( G `  I )  ->  (
( ph  /\  f  e.  A )  <->  ( ph  /\  ( G `  I
)  e.  A ) ) )
10 feq1 5517 . . . . . . 7  |-  ( f  =  ( G `  I )  ->  (
f : T --> RR  <->  ( G `  I ) : T --> RR ) )
119, 10imbi12d 312 . . . . . 6  |-  ( f  =  ( G `  I )  ->  (
( ( ph  /\  f  e.  A )  ->  f : T --> RR )  <-> 
( ( ph  /\  ( G `  I )  e.  A )  -> 
( G `  I
) : T --> RR ) ) )
12 stoweidlem15.4 . . . . . 6  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
1311, 12vtoclg 2955 . . . . 5  |-  ( ( G `  I )  e.  A  ->  (
( ph  /\  ( G `  I )  e.  A )  ->  ( G `  I ) : T --> RR ) )
147, 13syl 16 . . . 4  |-  ( (
ph  /\  I  e.  ( 1 ... M
) )  ->  (
( ph  /\  ( G `  I )  e.  A )  ->  ( G `  I ) : T --> RR ) )
151, 7, 14mp2and 661 . . 3  |-  ( (
ph  /\  I  e.  ( 1 ... M
) )  ->  ( G `  I ) : T --> RR )
1615fnvinran 27354 . 2  |-  ( ( ( ph  /\  I  e.  ( 1 ... M
) )  /\  S  e.  T )  ->  (
( G `  I
) `  S )  e.  RR )
173, 5syl6eleq 2478 . . . . . . 7  |-  ( (
ph  /\  I  e.  ( 1 ... M
) )  ->  ( G `  I )  e.  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) } )
18 fveq1 5668 . . . . . . . . . 10  |-  ( h  =  ( G `  I )  ->  (
h `  Z )  =  ( ( G `
 I ) `  Z ) )
1918eqeq1d 2396 . . . . . . . . 9  |-  ( h  =  ( G `  I )  ->  (
( h `  Z
)  =  0  <->  (
( G `  I
) `  Z )  =  0 ) )
20 fveq1 5668 . . . . . . . . . . . 12  |-  ( h  =  ( G `  I )  ->  (
h `  t )  =  ( ( G `
 I ) `  t ) )
2120breq2d 4166 . . . . . . . . . . 11  |-  ( h  =  ( G `  I )  ->  (
0  <_  ( h `  t )  <->  0  <_  ( ( G `  I
) `  t )
) )
2220breq1d 4164 . . . . . . . . . . 11  |-  ( h  =  ( G `  I )  ->  (
( h `  t
)  <_  1  <->  ( ( G `  I ) `  t )  <_  1
) )
2321, 22anbi12d 692 . . . . . . . . . 10  |-  ( h  =  ( G `  I )  ->  (
( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <-> 
( 0  <_  (
( G `  I
) `  t )  /\  ( ( G `  I ) `  t
)  <_  1 ) ) )
2423ralbidv 2670 . . . . . . . . 9  |-  ( h  =  ( G `  I )  ->  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <->  A. t  e.  T  ( 0  <_  (
( G `  I
) `  t )  /\  ( ( G `  I ) `  t
)  <_  1 ) ) )
2519, 24anbi12d 692 . . . . . . . 8  |-  ( h  =  ( G `  I )  ->  (
( ( h `  Z )  =  0  /\  A. t  e.  T  ( 0  <_ 
( h `  t
)  /\  ( h `  t )  <_  1
) )  <->  ( (
( G `  I
) `  Z )  =  0  /\  A. t  e.  T  (
0  <_  ( ( G `  I ) `  t )  /\  (
( G `  I
) `  t )  <_  1 ) ) ) )
2625elrab 3036 . . . . . . 7  |-  ( ( G `  I )  e.  { h  e.  A  |  ( ( h `  Z )  =  0  /\  A. t  e.  T  (
0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }  <-> 
( ( G `  I )  e.  A  /\  ( ( ( G `
 I ) `  Z )  =  0  /\  A. t  e.  T  ( 0  <_ 
( ( G `  I ) `  t
)  /\  ( ( G `  I ) `  t )  <_  1
) ) ) )
2717, 26sylib 189 . . . . . 6  |-  ( (
ph  /\  I  e.  ( 1 ... M
) )  ->  (
( G `  I
)  e.  A  /\  ( ( ( G `
 I ) `  Z )  =  0  /\  A. t  e.  T  ( 0  <_ 
( ( G `  I ) `  t
)  /\  ( ( G `  I ) `  t )  <_  1
) ) ) )
2827simprd 450 . . . . 5  |-  ( (
ph  /\  I  e.  ( 1 ... M
) )  ->  (
( ( G `  I ) `  Z
)  =  0  /\ 
A. t  e.  T  ( 0  <_  (
( G `  I
) `  t )  /\  ( ( G `  I ) `  t
)  <_  1 ) ) )
2928simprd 450 . . . 4  |-  ( (
ph  /\  I  e.  ( 1 ... M
) )  ->  A. t  e.  T  ( 0  <_  ( ( G `
 I ) `  t )  /\  (
( G `  I
) `  t )  <_  1 ) )
30 fveq2 5669 . . . . . . . 8  |-  ( s  =  t  ->  (
( G `  I
) `  s )  =  ( ( G `
 I ) `  t ) )
3130breq2d 4166 . . . . . . 7  |-  ( s  =  t  ->  (
0  <_  ( ( G `  I ) `  s )  <->  0  <_  ( ( G `  I
) `  t )
) )
3230breq1d 4164 . . . . . . 7  |-  ( s  =  t  ->  (
( ( G `  I ) `  s
)  <_  1  <->  ( ( G `  I ) `  t )  <_  1
) )
3331, 32anbi12d 692 . . . . . 6  |-  ( s  =  t  ->  (
( 0  <_  (
( G `  I
) `  s )  /\  ( ( G `  I ) `  s
)  <_  1 )  <-> 
( 0  <_  (
( G `  I
) `  t )  /\  ( ( G `  I ) `  t
)  <_  1 ) ) )
3433cbvralv 2876 . . . . 5  |-  ( A. s  e.  T  (
0  <_  ( ( G `  I ) `  s )  /\  (
( G `  I
) `  s )  <_  1 )  <->  A. t  e.  T  ( 0  <_  ( ( G `
 I ) `  t )  /\  (
( G `  I
) `  t )  <_  1 ) )
35 fveq2 5669 . . . . . . . 8  |-  ( s  =  S  ->  (
( G `  I
) `  s )  =  ( ( G `
 I ) `  S ) )
3635breq2d 4166 . . . . . . 7  |-  ( s  =  S  ->  (
0  <_  ( ( G `  I ) `  s )  <->  0  <_  ( ( G `  I
) `  S )
) )
3735breq1d 4164 . . . . . . 7  |-  ( s  =  S  ->  (
( ( G `  I ) `  s
)  <_  1  <->  ( ( G `  I ) `  S )  <_  1
) )
3836, 37anbi12d 692 . . . . . 6  |-  ( s  =  S  ->  (
( 0  <_  (
( G `  I
) `  s )  /\  ( ( G `  I ) `  s
)  <_  1 )  <-> 
( 0  <_  (
( G `  I
) `  S )  /\  ( ( G `  I ) `  S
)  <_  1 ) ) )
3938rspccva 2995 . . . . 5  |-  ( ( A. s  e.  T  ( 0  <_  (
( G `  I
) `  s )  /\  ( ( G `  I ) `  s
)  <_  1 )  /\  S  e.  T
)  ->  ( 0  <_  ( ( G `
 I ) `  S )  /\  (
( G `  I
) `  S )  <_  1 ) )
4034, 39sylanbr 460 . . . 4  |-  ( ( A. t  e.  T  ( 0  <_  (
( G `  I
) `  t )  /\  ( ( G `  I ) `  t
)  <_  1 )  /\  S  e.  T
)  ->  ( 0  <_  ( ( G `
 I ) `  S )  /\  (
( G `  I
) `  S )  <_  1 ) )
4129, 40sylan 458 . . 3  |-  ( ( ( ph  /\  I  e.  ( 1 ... M
) )  /\  S  e.  T )  ->  (
0  <_  ( ( G `  I ) `  S )  /\  (
( G `  I
) `  S )  <_  1 ) )
4241simpld 446 . 2  |-  ( ( ( ph  /\  I  e.  ( 1 ... M
) )  /\  S  e.  T )  ->  0  <_  ( ( G `  I ) `  S
) )
4341simprd 450 . 2  |-  ( ( ( ph  /\  I  e.  ( 1 ... M
) )  /\  S  e.  T )  ->  (
( G `  I
) `  S )  <_  1 )
4416, 42, 433jca 1134 1  |-  ( ( ( ph  /\  I  e.  ( 1 ... M
) )  /\  S  e.  T )  ->  (
( ( G `  I ) `  S
)  e.  RR  /\  0  <_  ( ( G `
 I ) `  S )  /\  (
( G `  I
) `  S )  <_  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2650   {crab 2654   class class class wbr 4154   -->wf 5391   ` cfv 5395  (class class class)co 6021   RRcr 8923   0cc0 8924   1c1 8925    <_ cle 9055   ...cfz 10976
This theorem is referenced by:  stoweidlem30  27448  stoweidlem38  27456  stoweidlem44  27462
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pr 4345
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-sbc 3106  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-br 4155  df-opab 4209  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-fv 5403
  Copyright terms: Public domain W3C validator