Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem16 Structured version   Unicode version

Theorem stoweidlem16 27696
Description: Lemma for stoweid 27743. The subset  Y of functions in the algebra  A, with values in [ 0 , 1 ], is closed under multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem16.1  |-  F/ t
ph
stoweidlem16.2  |-  Y  =  { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) }
stoweidlem16.3  |-  H  =  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )
stoweidlem16.4  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
stoweidlem16.5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
Assertion
Ref Expression
stoweidlem16  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  H  e.  Y )
Distinct variable groups:    f, g, h, t, A    T, f, h, t    ph, f    h, H
Allowed substitution hints:    ph( t, g, h)    T( g)    H( t, f, g)    Y( t, f, g, h)

Proof of Theorem stoweidlem16
StepHypRef Expression
1 stoweidlem16.3 . . . 4  |-  H  =  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )
2 simp1 957 . . . . 5  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  ph )
3 fveq1 5719 . . . . . . . . . . 11  |-  ( h  =  f  ->  (
h `  t )  =  ( f `  t ) )
43breq2d 4216 . . . . . . . . . 10  |-  ( h  =  f  ->  (
0  <_  ( h `  t )  <->  0  <_  ( f `  t ) ) )
53breq1d 4214 . . . . . . . . . 10  |-  ( h  =  f  ->  (
( h `  t
)  <_  1  <->  ( f `  t )  <_  1
) )
64, 5anbi12d 692 . . . . . . . . 9  |-  ( h  =  f  ->  (
( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <-> 
( 0  <_  (
f `  t )  /\  ( f `  t
)  <_  1 ) ) )
76ralbidv 2717 . . . . . . . 8  |-  ( h  =  f  ->  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <->  A. t  e.  T  ( 0  <_  (
f `  t )  /\  ( f `  t
)  <_  1 ) ) )
8 stoweidlem16.2 . . . . . . . 8  |-  Y  =  { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) }
97, 8elrab2 3086 . . . . . . 7  |-  ( f  e.  Y  <->  ( f  e.  A  /\  A. t  e.  T  ( 0  <_  ( f `  t )  /\  (
f `  t )  <_  1 ) ) )
109simplbi 447 . . . . . 6  |-  ( f  e.  Y  ->  f  e.  A )
11103ad2ant2 979 . . . . 5  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  f  e.  A )
12 fveq1 5719 . . . . . . . . . . 11  |-  ( h  =  g  ->  (
h `  t )  =  ( g `  t ) )
1312breq2d 4216 . . . . . . . . . 10  |-  ( h  =  g  ->  (
0  <_  ( h `  t )  <->  0  <_  ( g `  t ) ) )
1412breq1d 4214 . . . . . . . . . 10  |-  ( h  =  g  ->  (
( h `  t
)  <_  1  <->  ( g `  t )  <_  1
) )
1513, 14anbi12d 692 . . . . . . . . 9  |-  ( h  =  g  ->  (
( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <-> 
( 0  <_  (
g `  t )  /\  ( g `  t
)  <_  1 ) ) )
1615ralbidv 2717 . . . . . . . 8  |-  ( h  =  g  ->  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <->  A. t  e.  T  ( 0  <_  (
g `  t )  /\  ( g `  t
)  <_  1 ) ) )
1716, 8elrab2 3086 . . . . . . 7  |-  ( g  e.  Y  <->  ( g  e.  A  /\  A. t  e.  T  ( 0  <_  ( g `  t )  /\  (
g `  t )  <_  1 ) ) )
1817simplbi 447 . . . . . 6  |-  ( g  e.  Y  ->  g  e.  A )
19183ad2ant3 980 . . . . 5  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  g  e.  A )
20 stoweidlem16.5 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
212, 11, 19, 20syl3anc 1184 . . . 4  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
221, 21syl5eqel 2519 . . 3  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  H  e.  A )
23 stoweidlem16.1 . . . . 5  |-  F/ t
ph
24 nfra1 2748 . . . . . . . 8  |-  F/ t A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )
25 nfcv 2571 . . . . . . . 8  |-  F/_ t A
2624, 25nfrab 2881 . . . . . . 7  |-  F/_ t { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) }
278, 26nfcxfr 2568 . . . . . 6  |-  F/_ t Y
2827nfcri 2565 . . . . 5  |-  F/ t  f  e.  Y
2927nfcri 2565 . . . . 5  |-  F/ t  g  e.  Y
3023, 28, 29nf3an 1849 . . . 4  |-  F/ t ( ph  /\  f  e.  Y  /\  g  e.  Y )
312, 11jca 519 . . . . . . . . . . 11  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  ( ph  /\  f  e.  A ) )
3231adantr 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  ( ph  /\  f  e.  A
) )
33 stoweidlem16.4 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
3432, 33syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  f : T --> RR )
35 simpr 448 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  t  e.  T )
3634, 35ffvelrnd 5863 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
f `  t )  e.  RR )
372, 19jca 519 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  ( ph  /\  g  e.  A ) )
38 eleq1 2495 . . . . . . . . . . . . 13  |-  ( f  =  g  ->  (
f  e.  A  <->  g  e.  A ) )
3938anbi2d 685 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
( ph  /\  f  e.  A )  <->  ( ph  /\  g  e.  A ) ) )
40 feq1 5568 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
f : T --> RR  <->  g : T
--> RR ) )
4139, 40imbi12d 312 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
( ( ph  /\  f  e.  A )  ->  f : T --> RR )  <-> 
( ( ph  /\  g  e.  A )  ->  g : T --> RR ) ) )
4241, 33vtoclg 3003 . . . . . . . . . 10  |-  ( g  e.  A  ->  (
( ph  /\  g  e.  A )  ->  g : T --> RR ) )
4319, 37, 42sylc 58 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  g : T
--> RR )
4443fnvinran 27616 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
g `  t )  e.  RR )
459simprbi 451 . . . . . . . . . . 11  |-  ( f  e.  Y  ->  A. t  e.  T  ( 0  <_  ( f `  t )  /\  (
f `  t )  <_  1 ) )
46453ad2ant2 979 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  A. t  e.  T  ( 0  <_  ( f `  t )  /\  (
f `  t )  <_  1 ) )
4746r19.21bi 2796 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
0  <_  ( f `  t )  /\  (
f `  t )  <_  1 ) )
4847simpld 446 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  0  <_  ( f `  t
) )
4917simprbi 451 . . . . . . . . . . 11  |-  ( g  e.  Y  ->  A. t  e.  T  ( 0  <_  ( g `  t )  /\  (
g `  t )  <_  1 ) )
50493ad2ant3 980 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  A. t  e.  T  ( 0  <_  ( g `  t )  /\  (
g `  t )  <_  1 ) )
5150r19.21bi 2796 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
0  <_  ( g `  t )  /\  (
g `  t )  <_  1 ) )
5251simpld 446 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  0  <_  ( g `  t
) )
5336, 44, 48, 52mulge0d 9593 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  0  <_  ( ( f `  t )  x.  (
g `  t )
) )
5436, 44remulcld 9106 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
( f `  t
)  x.  ( g `
 t ) )  e.  RR )
551fvmpt2 5804 . . . . . . . 8  |-  ( ( t  e.  T  /\  ( ( f `  t )  x.  (
g `  t )
)  e.  RR )  ->  ( H `  t )  =  ( ( f `  t
)  x.  ( g `
 t ) ) )
5635, 54, 55syl2anc 643 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  ( H `  t )  =  ( ( f `
 t )  x.  ( g `  t
) ) )
5753, 56breqtrrd 4230 . . . . . 6  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  0  <_  ( H `  t
) )
58 1re 9080 . . . . . . . . . 10  |-  1  e.  RR
5958a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  1  e.  RR )
6047simprd 450 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
f `  t )  <_  1 )
6151simprd 450 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
g `  t )  <_  1 )
6236, 59, 44, 59, 48, 52, 60, 61lemul12ad 9943 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
( f `  t
)  x.  ( g `
 t ) )  <_  ( 1  x.  1 ) )
63 1t1e1 10116 . . . . . . . 8  |-  ( 1  x.  1 )  =  1
6462, 63syl6breq 4243 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
( f `  t
)  x.  ( g `
 t ) )  <_  1 )
6556, 64eqbrtrd 4224 . . . . . 6  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  ( H `  t )  <_  1 )
6657, 65jca 519 . . . . 5  |-  ( ( ( ph  /\  f  e.  Y  /\  g  e.  Y )  /\  t  e.  T )  ->  (
0  <_  ( H `  t )  /\  ( H `  t )  <_  1 ) )
6766ex 424 . . . 4  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  ( t  e.  T  ->  ( 0  <_  ( H `  t )  /\  ( H `  t )  <_  1 ) ) )
6830, 67ralrimi 2779 . . 3  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  A. t  e.  T  ( 0  <_  ( H `  t )  /\  ( H `  t )  <_  1 ) )
69 nfmpt1 4290 . . . . . . 7  |-  F/_ t
( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )
701, 69nfcxfr 2568 . . . . . 6  |-  F/_ t H
7170nfeq2 2582 . . . . 5  |-  F/ t  h  =  H
72 fveq1 5719 . . . . . . 7  |-  ( h  =  H  ->  (
h `  t )  =  ( H `  t ) )
7372breq2d 4216 . . . . . 6  |-  ( h  =  H  ->  (
0  <_  ( h `  t )  <->  0  <_  ( H `  t ) ) )
7472breq1d 4214 . . . . . 6  |-  ( h  =  H  ->  (
( h `  t
)  <_  1  <->  ( H `  t )  <_  1
) )
7573, 74anbi12d 692 . . . . 5  |-  ( h  =  H  ->  (
( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <-> 
( 0  <_  ( H `  t )  /\  ( H `  t
)  <_  1 ) ) )
7671, 75ralbid 2715 . . . 4  |-  ( h  =  H  ->  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <->  A. t  e.  T  ( 0  <_  ( H `  t )  /\  ( H `  t
)  <_  1 ) ) )
7776elrab 3084 . . 3  |-  ( H  e.  { h  e.  A  |  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) }  <->  ( H  e.  A  /\  A. t  e.  T  ( 0  <_  ( H `  t )  /\  ( H `  t )  <_  1 ) ) )
7822, 68, 77sylanbrc 646 . 2  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  H  e.  { h  e.  A  |  A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 ) } )
7978, 8syl6eleqr 2526 1  |-  ( (
ph  /\  f  e.  Y  /\  g  e.  Y
)  ->  H  e.  Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   F/wnf 1553    = wceq 1652    e. wcel 1725   A.wral 2697   {crab 2701   class class class wbr 4204    e. cmpt 4258   -->wf 5442   ` cfv 5446  (class class class)co 6073   RRcr 8979   0cc0 8980   1c1 8981    x. cmul 8985    <_ cle 9111
This theorem is referenced by:  stoweidlem48  27728  stoweidlem51  27731
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284
  Copyright terms: Public domain W3C validator